Abstract
Simian virus 40-transformed hamster cells (LL-1) permissive to herpes simplex virus type 1 (HSV-1) were shown to be relatively nonpermissive to HSV-2. When LL-1 cells were infected with HSV-2, there was a 3- to 4-log reduction in infectious viral progeny at 24 h postinfection as compared with HSV-1 under identical cultured conditions. HSV-2 could be carried in the LL-1 cell line for up to 12 passages without any appreciable cytopathology. Various early functions of the replicative cycle of HSV-2 appeared to be normal. Experiments demonstrated that early enzyme activity, HSV-2 thymidine kinase, and DNA polymerase appeared at permissive levels in extracts of HSV-2-infected LL-1 cells. However, DNA analysis of HSV-2 infected LL-1 cells demonstrated a block in HSV-2-specific DNA synthesis, although HSV-2 was capable of inhibiting DNA synthesis in LL-1 cells. Furthermore, indirect immunofluorescence studies indicate that late HSV-2 structural protein synthesis was inhibited in infected LL-1 cells. Thus, the inability of HSV-2 to replicate in LL-1 cells is due to a block at or before HSV-specific DNA synthesis, resulting in a reduction of the structural protein synthesis required for viral maturation.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boyd A. L., Orme T. W. Transformation of mouse cells after infection with ultraviolet irradiation-inactivated herpes simplex virus type 2. Int J Cancer. 1975 Oct 15;16(4):526–538. doi: 10.1002/ijc.2910160403. [DOI] [PubMed] [Google Scholar]
- Burns J. C., Murray B. K. Conversion of herpetic lesions to malignancy by ultraviolet exposure and promoter application. J Gen Virol. 1981 Aug;55(Pt 2):305–313. doi: 10.1099/0022-1317-55-2-305. [DOI] [PubMed] [Google Scholar]
- Camacho A., Spear G. Transformation of hamster embryo fibroblasts by a specific fragment of the herpes simplex virus genome. Cell. 1978 Nov;15(3):993–1002. doi: 10.1016/0092-8674(78)90283-0. [DOI] [PubMed] [Google Scholar]
- Cook M. L., Stevens J. G. Pathogenesis of herpetic neuritis and ganglionitis in mice: evidence for intra-axonal transport of infection. Infect Immun. 1973 Feb;7(2):272–288. doi: 10.1128/iai.7.2.272-288.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dobersen M. J., Jerkofsky M., Greer S. Enzymatic basis for the selective inhibition of varicella-zoster virus by 5-halogenated analogues of deoxycytidine. J Virol. 1976 Nov;20(2):478–486. doi: 10.1128/jvi.20.2.478-486.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Docherty J. J., Mäntyjärvi R. A., Rapp F. Mechanism of the restricted growth of herpes simplex virus type 2 in a hamster cell line. J Gen Virol. 1972 Sep;16(3):255–264. doi: 10.1099/0022-1317-16-3-255. [DOI] [PubMed] [Google Scholar]
- Docherty J. J., O'Neill F. J., Rapp F. Differential susceptibility to herpes simplex viruses of hamster cell lines established after exposure to chemically inactivated herpesvirus. J Gen Virol. 1971 Dec;13(3):377–384. doi: 10.1099/0022-1317-13-3-377. [DOI] [PubMed] [Google Scholar]
- Duff R., Rapp F. Oncogenic transformation of hamster cells after exposure to herpes simplex virus type 2. Nat New Biol. 1971 Sep 8;233(36):48–50. doi: 10.1038/newbio233048a0. [DOI] [PubMed] [Google Scholar]
- Duff R., Rapp F. Properties of hamster embryo fibroblasts transformed in vitro after exposure to ultraviolet-irradiated herpes simplex virus type 2. J Virol. 1971 Oct;8(4):469–477. doi: 10.1128/jvi.8.4.469-477.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galloway D. A., Goldstein L. C., Lewis J. B. Identification of proteins encoded by a fragment of herpes simplex virus type 2 DNA that has transforming activity. J Virol. 1982 May;42(2):530–537. doi: 10.1128/jvi.42.2.530-537.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill T. J., Blyth W. A., Harbour D. A. Trauma to the skin causes recurrence of herpes simplex in the mouse. J Gen Virol. 1978 Apr;39(1):21–28. doi: 10.1099/0022-1317-39-1-21. [DOI] [PubMed] [Google Scholar]
- Honess R. W., Roizman B. Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. J Virol. 1974 Jul;14(1):8–19. doi: 10.1128/jvi.14.1.8-19.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khan N. C., Melnick J. L., Biswal N. Photodynamic treatment of herpes simplex virus during its replicative cycle. J Virol. 1977 Jan;21(1):16–23. doi: 10.1128/jvi.21.1.16-23.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kieff E., Hoyer B., Bachenheimer S., Roizman B. Genetic relatedness of type 1 and type 2 herpes simplex viruses. J Virol. 1972 May;9(5):738–745. doi: 10.1128/jvi.9.5.738-745.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Levine M., Goldin A. L., Glorioso J. C. Persistence of herpes simplex virus genes in cells of neuronal origin. J Virol. 1980 Jul;35(1):203–210. doi: 10.1128/jvi.35.1.203-210.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lowry S. P., Melnick J. L., Rawls W. E. Investigation of plaque formation in chick embryo cells as a biological marker for distinguishing herpes virus type 2 from type 1. J Gen Virol. 1971 Jan;10(1):1–9. doi: 10.1099/0022-1317-10-1-1. [DOI] [PubMed] [Google Scholar]
- Rapp F., Li J. L., Jerkofsky M. Transformation of mammalian cells by DNA-containing viruses following photodynamic inactivation. Virology. 1973 Oct;55(2):339–346. doi: 10.1016/0042-6822(73)90173-6. [DOI] [PubMed] [Google Scholar]
- Reyes G. R., LaFemina R., Hayward S. D., Hayward G. S. Morphological transformation by DNA fragments of human herpesviruses: evidence for two distinct transforming regions in herpes simplex virus types 1 and 2 and lack of correlation with biochemical transfer of the thymidine kinase gene. Cold Spring Harb Symp Quant Biol. 1980;44(Pt 1):629–641. doi: 10.1101/sqb.1980.044.01.066. [DOI] [PubMed] [Google Scholar]
- Skinner G. R. Transformation of primary hamster embryo fibroblasts by type 2 simplex virus: evidence for a "hit and run" mechanism. Br J Exp Pathol. 1976 Aug;57(4):361–376. [PMC free article] [PubMed] [Google Scholar]
- Stevens J. G., Cook M. L. Latent herpes simplex virus in spinal ganglia of mice. Science. 1971 Aug 27;173(3999):843–845. doi: 10.1126/science.173.3999.843. [DOI] [PubMed] [Google Scholar]
- Takahashi M., Yamanishi K. Transformation of hamster embryo and human embryo cells by temperature sensitive mutants of herpes simplex virus type 2. Virology. 1974 Sep;61(1):306–311. doi: 10.1016/0042-6822(74)90267-0. [DOI] [PubMed] [Google Scholar]
- Tenser R. B., Dunstan M. E. Herpes simplex virus thymidine kinase expression in infection of the trigeminal ganglion. Virology. 1979 Dec;99(2):417–422. doi: 10.1016/0042-6822(79)90021-7. [DOI] [PubMed] [Google Scholar]
- Weissbach A., Hong S. C., Aucker J., Muller R. Characterization of herpes simplex virus-induced deoxyribonucleic acid polymerase. J Biol Chem. 1973 Sep 25;248(18):6270–6277. [PubMed] [Google Scholar]
- van der Noordaa J., Enders J. F., Diamandopoulos G. T. Increased resistance to herpes simplex virus of hamster and human cells transformed by SV40. Proc Soc Exp Biol Med. 1966 Jul;122(3):915–920. doi: 10.3181/00379727-122-31289. [DOI] [PubMed] [Google Scholar]
