Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1983 Apr;40(1):81–90. doi: 10.1128/iai.40.1.81-90.1983

Comparative Study of Streptococcus mutans Laboratory Strains and Fresh Isolates from Carious and Caries-Free Tooth Surfaces and from Subjects with Hereditary Fructose Intolerance

Christian Vadeboncoeur 1, Luc Trahan 1
PMCID: PMC264820  PMID: 6832839

Abstract

This study was undertaken to investigate and compare some biochemical and physiological properties related to sugar metabolism of 4 laboratory strains and 13 freshly isolated strains of Streptococcus mutans from carious and caries-free tooth surfaces and from subjects with hereditary fructose intolerance. Growth in Trypticase (BBL Microbiology Systems)-yeast extract in the presence of various sugars was almost the same for all of the fresh isolates, which grew generally better than the laboratory strains. This was especially noticeable on sucrose where the fresh isolates (including those isolated from hereditary-fructose-intolerant patients) grew two to four times more rapidly than the laboratory strains. The rate of acid production by the fresh isolates, measured with resting cells in the presence of glucose, was quite comparable to the rate of the laboratory strains. The glucose analog, 2-deoxyglucose, inhibited the acid production from glucose by two laboratory strains (6715 and ATCC 27352), but none of the fresh isolates was affected by its presence. The antibiotic, gramicidin D, which allows free diffusion of H+ across the cell membrane, inhibited the acid production of all of the strains. Phosphoenolpyruvate phosphotransferase activity toward α-methylglucoside was found in all of the laboratory and freshly isolated strains. 2-Deoxyglucose phosphotransferase activity was detected in all of the laboratory strains, but many clinical strains, especially those from hereditary-fructose-intolerant patients, contained very low or almost undetectable 2-deoxyglucose phosphotransferase activity. In one strain, the activity was restored after repeated culturing in Trypticase-yeast extract medium supplemented with glucose. Glucokinase and lactate dehydrogenase activities were detected in all of the strains tested. No marked differences were observed for these two enzymes between the fresh isolates and the laboratory strains except for three clinical strains which possessed low levels of glucokinase. The growth of all of the strains in a broth containing 4 mM glucose and 4 mM lactose was studied. Various patterns were observed: diauxie, glucose utilized before lactose but without diauxie, both sugars consumed concurrently, and lactose consumed more rapidly than glucose.

Full text

PDF
81

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABELES R. H., DORFMAN A., ROSEMAN S. Behavior of carbohydrates toward strongly basic ion-exchange resins. Arch Biochem Biophys. 1952 Mar;36(1):232–233. doi: 10.1016/0003-9861(52)90394-9. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Bratthall D. Demonstration of five serological groups of streptococcal strains resembling Streptococcus mutans. Odontol Revy. 1970;21(2):143–152. [PubMed] [Google Scholar]
  4. Brown A. T., Wittenberger C. L. Fructose-1,6-diphosphate-dependent lactate dehydrogenase from a cariogenic streptococcus: purification and regulatory properties. J Bacteriol. 1972 May;110(2):604–615. doi: 10.1128/jb.110.2.604-615.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clark B., Holms W. H. Control of the sequential utilization of glucose and fructose by Escherichia coli. J Gen Microbiol. 1976 Aug;96(2):191–201. doi: 10.1099/00221287-95-2-191. [DOI] [PubMed] [Google Scholar]
  6. Coykendall A. L. Four types of Streptococcus mutans based on their genetic, antigenic and biochemical characteristics. J Gen Microbiol. 1974 Aug;83(2):327–338. doi: 10.1099/00221287-83-2-327. [DOI] [PubMed] [Google Scholar]
  7. Dills S. S., Apperson A., Schmidt M. R., Saier M. H., Jr Carbohydrate transport in bacteria. Microbiol Rev. 1980 Sep;44(3):385–418. doi: 10.1128/mr.44.3.385-418.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Donoghue H. D. Composition of dental plaque obtained from eight sites in the mouth of a ten-year-old girl. J Dent Res. 1974 Sep-Oct;53(5):1289–1293. doi: 10.1177/00220345740530053601. [DOI] [PubMed] [Google Scholar]
  9. Ellwood D. C., Phipps P. J., Hamilton I. R. Effect of growth rate and glucose concentration on the activity of the phosphoenolpyruvate phosphotransferase system in Streptococcus mutans Ingbritt grown in continuous culture. Infect Immun. 1979 Feb;23(2):224–231. doi: 10.1128/iai.23.2.224-231.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gachelin G. Studies on the alpha-methylglucoside permease of Escherichia coli. A two-step mechanism for the accumulation of alpha-methylglucoside 6-phosphate. Eur J Biochem. 1970 Oct;16(2):342–357. doi: 10.1111/j.1432-1033.1970.tb01088.x. [DOI] [PubMed] [Google Scholar]
  11. HERS H. G., JOASSIN G. [Anomaly of hepatic aldolase in intolerance to fructose]. Enzymol Biol Clin (Basel) 1961;1:4–14. [PubMed] [Google Scholar]
  12. Hamilton I. R., Ellwood D. C. Effects of fluoride on carbohydrate metabolism by washed cells of Streptococcus mutans grown at various pH values in a chemostat. Infect Immun. 1978 Feb;19(2):434–442. doi: 10.1128/iai.19.2.434-442.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hamilton I. R., Lo G. C. Co-induction of beta-galactosidase and the lactose-P-enolpyruvate phosphotransferase system in Streptococcus salivarius and Streptococcus mutans. J Bacteriol. 1978 Dec;136(3):900–908. doi: 10.1128/jb.136.3.900-908.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hamilton I. R., St Martin E. J. Evidence for the involvement of proton motive force in the transport of glucose by a mutant of Streptococcus mutans strain DR0001 defective in glucose-phosphoenolpyruvate phosphotransferase activity. Infect Immun. 1982 May;36(2):567–575. doi: 10.1128/iai.36.2.567-575.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hoover C. I., Newbrun E., Mettraux G., Graf H. Microflora and chemical composition of dental plaque from subjects with hereditary fructose intolerance. Infect Immun. 1980 Jun;28(3):853–859. doi: 10.1128/iai.28.3.853-859.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. KUNDIG W., GHOSH S., ROSEMAN S. PHOSPHATE BOUND TO HISTIDINE IN A PROTEIN AS AN INTERMEDIATE IN A NOVEL PHOSPHO-TRANSFERASE SYSTEM. Proc Natl Acad Sci U S A. 1964 Oct;52:1067–1074. doi: 10.1073/pnas.52.4.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kral T. A., Daneo-Moore L. Biochemical differentiation of certain oral streptococci. J Dent Res. 1981 Sep;60(9):1713–1718. doi: 10.1177/00220345810600091301. [DOI] [PubMed] [Google Scholar]
  18. Köhler B., Pettersson B. M., Bratthall D. Streptococcus mutans in plaque and saliva and the development of caries. Scand J Dent Res. 1981 Feb;89(1):19–25. doi: 10.1111/j.1600-0722.1981.tb01273.x. [DOI] [PubMed] [Google Scholar]
  19. Köhlin P., Melin K. Hereditary fructose intolerance in four Swedish families. Acta Paediatr Scand. 1968 Jan;57(1):24–32. doi: 10.1111/j.1651-2227.1968.tb07281.x. [DOI] [PubMed] [Google Scholar]
  20. Loesche W. J., Hockett R. N., Syed S. A. The predominant cultivable flora of tooth surface plaque removed from institutionalized subjects. Arch Oral Biol. 1972 Sep;17(9):1311–1325. doi: 10.1016/0003-9969(72)90164-1. [DOI] [PubMed] [Google Scholar]
  21. Loesche W. J., Rowan J., Straffon L. H., Loos P. J. Association of Streptococcus mutants with human dental decay. Infect Immun. 1975 Jun;11(6):1252–1260. doi: 10.1128/iai.11.6.1252-1260.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Loesche W. J., Straffon L. H. Longitudinal investigation of the role of Streptococcus mutans in human fissure decay. Infect Immun. 1979 Nov;26(2):498–507. doi: 10.1128/iai.26.2.498-507.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lopez J. M., Thoms B. Role of sugar uptake and metabolic intermediates on catabolite repression in Bacillus subtilis. J Bacteriol. 1977 Jan;129(1):217–224. doi: 10.1128/jb.129.1.217-224.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Marthaler T. M., Froesch E. R. Hereditary fructose intolerance. Dental status of eight patients. Br Dent J. 1967 Dec 19;123(12):597–599. [PubMed] [Google Scholar]
  25. Morris D. L. Quantitative Determination of Carbohydrates With Dreywood's Anthrone Reagent. Science. 1948 Mar 5;107(2775):254–255. doi: 10.1126/science.107.2775.254. [DOI] [PubMed] [Google Scholar]
  26. Newbrun E., Hoover C., Mettraux G., Graf H. Comparison of dietary habits and dental health of subjects with hereditary fructose intolerance and control subjects. J Am Dent Assoc. 1980 Oct;101(4):619–626. doi: 10.14219/jada.archive.1980.0383. [DOI] [PubMed] [Google Scholar]
  27. Pastan I., Perlman R. L. Repression of beta-galactosidase synthesis by glucose in phosphotransferase mutants of Escherichia coli. Repression in the absence of glucose phosphorylation. J Biol Chem. 1969 Nov 10;244(21):5836–5842. [PubMed] [Google Scholar]
  28. Perch B., Kjems E., Ravn T. Biochemical and serological properties of Streptococcus mutans from various human and animal sources. Acta Pathol Microbiol Scand B Microbiol Immunol. 1974 Jun;82(3):357–370. doi: 10.1111/j.1699-0463.1974.tb02338.x. [DOI] [PubMed] [Google Scholar]
  29. Porter E. V., Chassy B. M., Holmlund C. E. Partial purification and properties of a specific glucokinase from Streptococcus mutans SL-1. Biochim Biophys Acta. 1980 Feb 14;611(2):289–298. doi: 10.1016/0005-2744(80)90064-9. [DOI] [PubMed] [Google Scholar]
  30. Postma P. W., Roseman S. The bacterial phosphoenolpyruvate: sugar phosphotransferase system. Biochim Biophys Acta. 1976 Dec 14;457(3-4):213–257. doi: 10.1016/0304-4157(76)90001-0. [DOI] [PubMed] [Google Scholar]
  31. Roberts K. R., Hayes M. L. Effects of 2-deoxy D-glucose and other sugar analogues on acid production from sugars by human dental plaque bacteria. Scand J Dent Res. 1980 Jun;88(3):201–209. doi: 10.1111/j.1600-0722.1980.tb01215.x. [DOI] [PubMed] [Google Scholar]
  32. Robinson P. J., Shapiro I. M. Effect of diphosphonates on root resorption. J Dent Res. 1976 Jan-Feb;55(1):166–166. doi: 10.1177/00220345760550011201. [DOI] [PubMed] [Google Scholar]
  33. Robrish S. A., Grove S. B., Bernstein R. S., Marucha P. T., Socransky S. S., Amdur B. Effect of sonic treatment on pure cultures and aggregates of bacteria. J Clin Microbiol. 1976 May;3(5):474–479. doi: 10.1128/jcm.3.5.474-479.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Saier M. H., Jr Bacterial phosphoenolpyruvate: sugar phosphotransferase systems: structural, functional, and evolutionary interrelationships. Bacteriol Rev. 1977 Dec;41(4):856–871. doi: 10.1128/br.41.4.856-871.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Saier M. H., Jr, Roseman S. Sugar transport. The crr mutation: its effect on repression of enzyme synthesis. J Biol Chem. 1976 Nov 10;251(21):6598–6605. [PubMed] [Google Scholar]
  36. Schachtele C. F., Mayo J. A. Phosphoenolpyruvate-dependent glucose transport in oral streptococci. J Dent Res. 1973 Nov-Dec;52(6):1209–1215. doi: 10.1177/00220345730520060801. [DOI] [PubMed] [Google Scholar]
  37. Shklair I. L., Keene H. J. A biochemical scheme for the separation of the five varieties of Streptococcus mutans. Arch Oral Biol. 1974 Nov;19(11):1079–1081. doi: 10.1016/0003-9969(74)90099-5. [DOI] [PubMed] [Google Scholar]
  38. Syed S. A., Loesche W. J. Survival of human dental plaque flora in various transport media. Appl Microbiol. 1972 Oct;24(4):638–644. doi: 10.1128/am.24.4.638-644.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Vadeboncoeur C., Mayrand D., Trahan L. A comparative study of enzymes involved in glucose phosphorylation in oral streptococci. J Dent Res. 1982 Jan;61(1):60–65. doi: 10.1177/00220345820610011401. [DOI] [PubMed] [Google Scholar]
  40. Vadeboncoeur C., Proulx M., Trahan L. Effect of gramicidin D on the acidogenic properties of oral streptococci and human dental plaque. J Dent Res. 1982 May;61(5):632–635. doi: 10.1177/00220345820610050201. [DOI] [PubMed] [Google Scholar]
  41. Vadeboncoeur C., Trahan L. Glucose transport in Streptococcus salivarius. Evidence for the presence of a distinct phosphoenolpyruvate: glucose phosphotransferase system which catalyses the phosphorylation of alpha-methyl glucoside. Can J Microbiol. 1982 Feb;28(2):190–199. doi: 10.1139/m82-025. [DOI] [PubMed] [Google Scholar]
  42. Yamada T., Carlsson J. Regulation of lactate dehydrogenase and change of fermentation products in streptococci. J Bacteriol. 1975 Oct;124(1):55–61. doi: 10.1128/jb.124.1.55-61.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. van Houte J. Bacterial specificity in the etiology of dental caries. Int Dent J. 1980 Dec;30(4):305–326. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES