Abstract
The lymphoproliferative response to measles, mumps, and vaccinia virus-infected monolayers measured in seropositive adults by thymidine incorporation demonstrated that only 5% of individuals responded well to measles virus (stimulation index, greater than 5). Possible explanations for this occurrence include a lack of sensitization, active suppression, or failure in long-term stimulation. To distinguish among these possibilities, we studied the responses to measles virus in 22 immunocompetent individuals during early convalescence from natural measles infection. Substantial responses occurred (stimulation index, 7.03), particularly in a smaller group which included those individuals with milder cases of the disease. The level of responsiveness declined over a period of weeks. Responder and nonresponder cell mixing showed no active cellular suppression. These studies indicate that the low responses to measles virus found in late convalescence represent a lack of prolonged stimulation of the cell population measured in this assay.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Clinical trial of live measles vaccine given alone and live vaccine preceded by killed vaccine. Fourth report to the medical research council by the measles sub-committee of the committee on development of vaccines and immunisation procedures. Lancet. 1977 Sep 17;2(8038):571–575. [PubMed] [Google Scholar]
- Farrar J. J., Benjamin W. R., Hilfiker M. L., Howard M., Farrar W. L., Fuller-Farrar J. The biochemistry, biology, and role of interleukin 2 in the induction of cytotoxic T cell and antibody-forming B cell responses. Immunol Rev. 1982;63:129–166. doi: 10.1111/j.1600-065x.1982.tb00414.x. [DOI] [PubMed] [Google Scholar]
- Galama J. M., Ubels-Postma J., Vos A., Lucas C. J. Measles virus inhibits acquisition of lymphocyte functions but not established effector functions. Cell Immunol. 1980 Mar 15;50(2):405–415. doi: 10.1016/0008-8749(80)90294-4. [DOI] [PubMed] [Google Scholar]
- Haase A. T., Ventura P., Gibbs C. J., Jr, Tourtellotte W. W. Measles virus nucleotide sequences: detection by hybridization in situ. Science. 1981 May 8;212(4495):672–675. doi: 10.1126/science.7221554. [DOI] [PubMed] [Google Scholar]
- Huddlestone J. R., Lampert P. W., Oldstone M. B. Virus-lymphocyte interactions: infection of Tg and Tm subsets by measles virus. Clin Immunol Immunopathol. 1980 Mar;15(3):502–509. doi: 10.1016/0090-1229(80)90062-8. [DOI] [PubMed] [Google Scholar]
- Joffe M. I., Rabson A. R. Dissociation of lymphokine production and blastogenesis in children with measles infections. Clin Immunol Immunopathol. 1978 Jul;10(3):335–343. doi: 10.1016/0090-1229(78)90190-3. [DOI] [PubMed] [Google Scholar]
- Joseph B. S., Lampert P. W., Oldstone M. B. Replication and persistence of measles virus in defined subpopulations of human leukocytes. J Virol. 1975 Dec;16(6):1638–1649. doi: 10.1128/jvi.16.6.1638-1649.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krause P. J., Cherry J. D., Carney J. M., Naiditch M. J., O'Connor K. Measles-specific lymphocyte reactivity and serum antibody in subjects with different measles histories. Am J Dis Child. 1980 Jun;134(6):567–571. doi: 10.1001/archpedi.1980.02130180025008. [DOI] [PubMed] [Google Scholar]
- Kreth H. W., ter Meulen V., Eckert G. Demonstration of HLA restricted killer cells in patients with acute measles. Med Microbiol Immunol. 1979 Jan 24;165(4):203–214. doi: 10.1007/BF02152920. [DOI] [PubMed] [Google Scholar]
- Lamb R. A., Etkind P. R., Choppin P. W. Evidence for a ninth influenza viral polypeptide. Virology. 1978 Nov;91(1):60–78. doi: 10.1016/0042-6822(78)90355-0. [DOI] [PubMed] [Google Scholar]
- Lucas C. J., Biddison W. E., Nelson D. L., Shaw S. Killing of measles virus-infected cells by human cytotoxic T cells. Infect Immun. 1982 Oct;38(1):226–232. doi: 10.1128/iai.38.1.226-232.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lucas C. J., Ubels-Postma J. C., Rezee A., Galama J. M. Activation of measles virus from silently infected human lymphocytes. J Exp Med. 1978 Oct 1;148(4):940–952. doi: 10.1084/jem.148.4.940. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McFarland H. F., McFarlin D. E. Cellular immune response to measles, mumps, and vaccinia viruses in multiple sclerosis. Ann Neurol. 1979 Aug;6(2):101–106. doi: 10.1002/ana.410060204. [DOI] [PubMed] [Google Scholar]
- McFarland H. F., Pedone C. A., Mingioli E. S., McFarlin D. E. The response of human lymphocyte subpopulations to measles, mumps, and vaccinia viral antigens. J Immunol. 1980 Jul;125(1):221–225. [PubMed] [Google Scholar]
- Mingioli E. S., Strober W., Tourtellotte W. W., Whitaker J. N., McFarlin D. E. Quantitation of IgG, IgA and IgM in the CSF by radioimmunoassay. Neurology. 1978 Oct;28(10):991–995. doi: 10.1212/wnl.28.10.991. [DOI] [PubMed] [Google Scholar]
- Sullivan J. L., Barry D. W., Albrecht P., Lucas S. J. Inhibition of lymphocyte stimulation by measles virus. J Immunol. 1975 May;114(5):1458–1461. [PubMed] [Google Scholar]
- Sullivan J. L., Barry D. W., Lucas S. J., Albrecht P. Measles infection of human mononuclear cells. I. Acute infection of peripheral blood lymphocytes and monocytes. J Exp Med. 1975 Sep 1;142(3):773–784. doi: 10.1084/jem.142.3.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Valdirmarsson H., Agnarsdottir G., Lachmann P. J. Measles virus receptor on human T lymphocytes. Nature. 1975 Jun 12;255(5509):554–556. doi: 10.1038/255554a0. [DOI] [PubMed] [Google Scholar]
- Welliver R. C., Cherry J. D., Holtzman A. E. Typical, modified, and atypical measles. Arch Intern Med. 1977 Jan;137(1):39–41. [PubMed] [Google Scholar]
- Whittle H. C., Dossetor J., Oduloju A., Bryceson A. D., Greenwood B. M. Cell-mediated immunity during natural measles infection. J Clin Invest. 1978 Sep;62(3):678–684. doi: 10.1172/JCI109175. [DOI] [PMC free article] [PubMed] [Google Scholar]