Abstract
This paper discusses translocation features of the 20S proteasome in order to explain typical proteasome length distributions. We assume that the protein transport depends significantly on the fragment length with some optimal length which is transported most efficiently. By means of a simple one-channel model, we show that this hypothesis can explain both the one- and the three-peak length distributions found in experiments. A possible mechanism of such translocation is provided by so-called fluctuation-driven transport.
Key words: proteasome, protein translocation, stochastic process, ratchets
References
- 1.Coux, O., Tanaka, K., Goldberg, A.L.: Structure and functions of the 20S and 26S proteasomes. Annu. Rev. Biochem. 65, 801–847 (1996) [DOI] [PubMed]
- 2.Kloetzel, P.M.: Antigen processing by the proteasome. Nat. Rev. Mol. Cell. Biol. 2, 179–187 (2001) [DOI] [PubMed]
- 3.Tamura, T., Nagy, I., Lupas, A., Lottspeich, F., Cejka, Z., Schoofs, G., Tanaka, K., De Mot, R., Baumeister, W.: The first characterization of a eubacterial proteasome: the 20S complex of Rhodococcus. Curr. Biol. 5, 766–774 (1995) [DOI] [PubMed]
- 4.Hendill, K.B.: The 19S multicatalytic ‘prosome’ proteinase is a constituitive enzyme in HeLa cells. Biochem. Int. 17, 471–478 (1988) [PubMed]
- 5.Kisselev, A.F., Akopian, T.N., Goldberg, A.L.: Range of sizes of peptide products generated during degradation of different proteins by archaeal proteasomes. J. Biol. Chem. 273, 1982–1989 (1998) [DOI] [PubMed]
- 6.Hilt, W., Wolf, D.H.: Proteasomes of the yeast S. cerevisiae: genes, structure and functions. Mol. Biol. Rep. 21, 3–10 (1995) [DOI] [PubMed]
- 7.Ciechanover, A.: The ubiquitin-proteasome proteolytic pathway. Cell 79, 13–21 (1994) [DOI] [PubMed]
- 8.Hochstrasser, M.: Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 30, 405–439 (1996) [DOI] [PubMed]
- 9.Goldberg, A.L., Cascio, P., Saric, T., Rock, K.L.: The importance of the proteasome and subsequent proteolytic steps in the generation of antigenic peptides. Mol. Immunol. 39, 147–164 (2002) [DOI] [PubMed]
- 10.Kloetzel, P.M.: Generation of major histocompatibility complex class I antigens: functional interplay between proteasomes and TPPII. Nat. Immunol. 5, 661–669 (2004a) [DOI] [PubMed]
- 11.Lankat-Buttgereit, B., Tampe, R.: The transporter associated with antigen processing: function and implications in human diseases. Physiol. Rev. 82, 187–204 (2002) [DOI] [PubMed]
- 12.Rock, K.L., Goldberg, A.L.: Degradation of cell proteins and the generation of MHC class I-presented peptides. Annu. Rev. Immunol. 17, 739–779 (1999) [DOI] [PubMed]
- 13.Shastri, N., Schwab, S.: Producing nature’s gene-chips: the generation of peptides for display by MHC class I molecules. Annu. Rev. Immunol. 20, 463–493 (2002) [DOI] [PubMed]
- 14.Adams, J., Palombella, V., Elliott, P.: Proteasome inhibition: a new strategy in cancer treatment. Invest. New Drugs 18, 109–121 (2000) [DOI] [PubMed]
- 15.Dou, Q.P., Smith, D., Daniel, K., Kazi, A.: Interruption of tumor cell cycle progression through proteasome inhibition: implications for cancer therapy. Prog. Cell Cycle Res. 5, 441–446 (2003) [PubMed]
- 16.Orlowski, R.Z.: The role of the ubiquitin-proteasome pathway in apoptosis. Cell Death Differ. 6, 303–313 (1999) [DOI] [PubMed]
- 17.Glickman, M., Ciechanover, A.: The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 82, 373–428 (2002) [DOI] [PubMed]
- 18.Sakamoto, K.: Ubiquitin-dependent proteolysis: its role in human diseases and the design of therapeutic strategies. Mol. Genet. Metab. 77, 44–56 (2002) [DOI] [PubMed]
- 19.Zeng, B.Y., Medhurst, A.D., Jackson, M., Rose, S., Jenner, P.: Proteasomal activity in brain differs between species and brain regions and changes with age. Mech. Ageing Dev. 126, 760–766 (2005) [DOI] [PubMed]
- 20.Kloetzel, P.M.: The proteasome and MHC class I antigen processing. Biochem. Biophys. Acta. 1695, 225–233 (2004b) [DOI] [PubMed]
- 21.Rechsteiner, M., Realini, C., Ustrell, V.: The proteasome activator 11S REG (PA28) and class I antigen presentation. Biochem. J. 345, 1–15 (2000) [DOI] [PMC free article] [PubMed]
- 22.Peters, J.M., Cejka, Z., Harris, J.R., Kleinschmidt, J.A., Baumeister, W.: Structural features of the 26S proteasome complex. J. Mol. Biol. 234, 932–937 (1993) [DOI] [PubMed]
- 23.Akopian, T.N., Kisselev, A.F., Goldberg, A.L.: Processive degradation of proteins and other catalytic properties of the proteasome from Thermoplasma acidophilum. J. Biol. Chem. 272, 1791–1798 (1997) [DOI] [PubMed]
- 24.Rapin, N., Kesmir, C., et al.: Integrating bioinformatics and systems biology for modelling of the immune system. J. Biol. Phys. (2006) [DOI] [PMC free article] [PubMed]
- 25.Cascio, P., Hilton, C., Kisselev, A.F., Rock, K.L., Goldberg, A.L.: 26S proteasomes and immunoproteasomes produce mainly N-extended versions of an antigenic peptide. EMBO J. 20, 2357–2366 (2001) [DOI] [PMC free article] [PubMed]
- 26.Nussbaum, A.: From the test tube to the world wide web: the cleavage specificity of the proteasome. PhD thesis, Eberhard-Karls-Universitaet Tuebingen (2001)
- 27.Nussbaum, A.K., Dick, T.P., Kielholz, W., Schirle, M., Stevanovic, S., Dietz, K., Heinemeyer, W., Groll, M., Wolf, D.H., Huber, R., Rammensee, H.G., Schild, H.: Cleavage motifs of the yeast 20S proteasome β subunits deduced form digests of enolase 1. Proc. Natl. Acad. Sci. USA 95, 12504–12509 (1998) [DOI] [PMC free article] [PubMed]
- 28.Wenzel, T., Eckerskorn, C., Lottspeich, F., Baumeister, W.: Existence of a molecular ruler in proteasomes suggested by analysis of degradation products. FEBS Lett. 349, 205–209 (1994) [DOI] [PubMed]
- 29.Köhler, A., Cascio, P., Leggett, D.S., Woo, K.M., Goldberg, A.L., Finley, D.: The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release. Mol. Cell (7), 1143–1152 (2001) [DOI] [PubMed]
- 30.Kuttler, C., Nussbaum, A.K., Dick, T.P., Rammensee, H.G., Schild, H., Hadeler, K.P.: An algorithm for the prediction of proteasomal cleavages. J. Mol. Biol. 298, 417–429 (2000) [DOI] [PubMed]
- 31.Kesmir, C., Nussbaum, A., Schild, H., Detours, V., Brunak, S.: Prediction of proteasome cleavage motifs by neural networks. Protein Eng. 15, 287–296 (2002) [DOI] [PubMed]
- 32.Tenzer, S., Peters, B., Bulik, S., Schoor, O., Lemmel, C., Schatz, M.M., Kloetzel, P.M., Rammensee, H.G., Schild, H., Holzhütter, H.G.: Modeling the MHC class I pathway by combining predictions of proteasomal clavage, TAP transport and MHC class I binding. CMLS, Cell. Mol. Life Sci. 62, 1025–1037 (2005) [DOI] [PMC free article] [PubMed]
- 33.Schmidtke, G., Emch, S., Groettrup, M., Holzhuetter, H.G.: Evidence for the existence of a non-catalytic modifier site of peptide hydrolysis by the 20S proteasome. J. Biol. Chem. 275, 22056–22063 (2000) [DOI] [PubMed]
- 34.Stein, R.L., Melandri, F., Dick, L.: Kinetic characterization of the chymotrypic activity of the 20S proteasome. Biochemistry 35, 3899–3908 (1996) [DOI] [PubMed]
- 35.Stohwasser, R., Salzmann, U., Giesebrecht, J., Kloetzel, P.M., Holzhuetter, H.G.: Kinetic evidence for facilitation of peptide channelling by the proteasome activator PA28. Eur. J. Biochem. 267, 6221–6230 (2000) [DOI] [PubMed]
- 36.Holzhütter, H.G., Kloetzel, P.M.: A kinetic model of vertebrate 20S proteasome accounting for the generation of major proteolytic fragments from oligomeric peptide substrates. Biophys. J. 79, 1196–1205 (2000) [DOI] [PMC free article] [PubMed]
- 37.Peters, B., Janek, K., Kuckelkorn, U., Holzhütter, H.G.: Assessment of proteasomal cleavage probabilities from kinetic analysis of time-dependent product formation. J. Mol. Biol. 318, 847–862 (2002) [DOI] [PubMed]
- 38.Gillespie, D.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434 (1976) [DOI]
- 39.Zaikin, A., Pöschel, T.: Peptide-size-dependent active transport in the proteasome. Europhys. Lett. 69, 725–731 (2005) [DOI]
- 40.Landa, P., Zaikin, A., Schimansky-Geier, L.: Effect of the potential shape and of a Brownian particle mass on noise-induced transport. Chaos, Solitons Fractals 12, 1459–1471 (2001) [DOI]
- 41.Brokaw, C.: Protein–protein ratchets: stochastic simulation and application to processive enzymes. Biophys. J. 81, 1333–1344 (2001) [DOI] [PMC free article] [PubMed]
- 42.Bier, M.: Processive motor protein as an overdamped brownian stepper. Phys. Rev. Lett. 91, 148104 (2003) [DOI] [PubMed]
- 43.Jung, P., Hänggi, P.: Resonantly driven Brownian motion: basic concepts and exact result. Phys. Rev. A 41, 2977 (1990) [DOI] [PubMed]
- 44.Gaczynska, M., Osmulski, P.A., Gao, Y., Post, M.J., Simons, M.: Proline- and Arginine-rich peptides constitute a novel class of allosteric inhibitors of proteasome activity. Biochemistry 42, 8663–8670 (2003) [DOI] [PubMed]
- 45.Osmulski, P.A., Gaczynska, M.: Atomic force microscopy reveals two conformations of the 20S. J. Biol. Chem. 275, 13171–13174 (2000) [DOI] [PubMed]
- 46.Osmulski, P.A., Gaczynska, M.: Nonoenzymology of the 20S proteasome: proteasomal actiona are controlled by the allosteric transitions. Biochemistry 41, 7047–7053 (2002) [DOI] [PubMed]
- 47.Luciani, F., Kesmir, C., Mishto, M., Or-Guil, M., de Boer, R.J.: A mathematical model of protein degradation by the proteasome. Biophys. J. 88, 2422–2432 (2005) [DOI] [PMC free article] [PubMed]
- 48.Dolenc, I., Seemüller, E., Baumeister, W.: Decelerated degradation of short peptides by the 20S proteasome. FEBS 434, 357–361 (1998) [DOI] [PubMed]
