Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1993 Aug;31(8):2000–2003. doi: 10.1128/jcm.31.8.2000-2003.1993

Relationship between indole production and differentiation of Klebsiella species: indole-positive and -negative isolates of Klebsiella determined to be clonal.

J N Maslow 1, S M Brecher 1, K S Adams 1, A Durbin 1, S Loring 1, R D Arbeit 1
PMCID: PMC265686  PMID: 8370726

Abstract

Klebsiellae are an important cause of nosocomial infections. The two clinically relevant species, Klebsiella pneumoniae and Klebsiella oxytoca, are differentiated by the ability to produce indole from tryptophan, K. oxytoca being indole positive. We report here the detailed biochemical and molecular analysis of two isolates of Klebsiella, cultured from the same urine specimen, that differed only in their ability to produce indole. The two isolates were identical as determined by ribotyping and pulsed-field gel electrophoresis, and they differed from 10 epidemiologically unrelated strains. Probing with the Escherichia coli tryptophanase operon, tna, revealed seven restriction fragment length polymorphisms (RFLP) among the 12 strains. The two index strains had identical RFLP; no single RFLP could account for all of the indole-positive or -negative strains. Thus, the identification of epidemiologically related strains of Klebsiella differing only in indole production may warrant further examination to determine whether the strains are clonal.

Full text

PDF
2000

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arbeit R. D., Arthur M., Dunn R., Kim C., Selander R. K., Goldstein R. Resolution of recent evolutionary divergence among Escherichia coli from related lineages: the application of pulsed field electrophoresis to molecular epidemiology. J Infect Dis. 1990 Feb;161(2):230–235. doi: 10.1093/infdis/161.2.230. [DOI] [PubMed] [Google Scholar]
  2. Arthur M., Arbeit R. D., Kim C., Beltran P., Crowe H., Steinbach S., Campanelli C., Wilson R. A., Selander R. K., Goldstein R. Restriction fragment length polymorphisms among uropathogenic Escherichia coli isolates: pap-related sequences compared with rrn operons. Infect Immun. 1990 Feb;58(2):471–479. doi: 10.1128/iai.58.2.471-479.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berg K. L., Squires C. L., Squires C. In vivo translation of a region within the rrnB 16S rRNA gene of Escherichia coli. J Bacteriol. 1987 Apr;169(4):1691–1701. doi: 10.1128/jb.169.4.1691-1701.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Deeley M. C., Yanofsky C. Nucleotide sequence of the structural gene for tryptophanase of Escherichia coli K-12. J Bacteriol. 1981 Sep;147(3):787–796. doi: 10.1128/jb.147.3.787-796.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kreger B. E., Craven D. E., Carling P. C., McCabe W. R. Gram-negative bacteremia. III. Reassessment of etiology, epidemiology and ecology in 612 patients. Am J Med. 1980 Mar;68(3):332–343. doi: 10.1016/0002-9343(80)90101-1. [DOI] [PubMed] [Google Scholar]
  6. LiPuma J. J., Stull T. L., Dasen S. E., Pidcock K. A., Kaye D., Korzeniowski O. M. DNA polymorphisms among Escherichia coli isolated from bacteriuric women. J Infect Dis. 1989 Mar;159(3):526–532. doi: 10.1093/infdis/159.3.526. [DOI] [PubMed] [Google Scholar]
  7. Montgomerie J. Z. Epidemiology of Klebsiella and hospital-associated infections. Rev Infect Dis. 1979 Sep-Oct;1(5):736–753. doi: 10.1093/clinids/1.5.736. [DOI] [PubMed] [Google Scholar]
  8. Pattee P. A. Chromosomal map location of the alpha-hemolysin structural gene in Staphylococcus aureus NCTC 8325. Infect Immun. 1986 Nov;54(2):593–596. doi: 10.1128/iai.54.2.593-596.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES