Summary
Two lysophospholipids (LPs), lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P), are known to affect various cellular events. Their actions are mediated by binding to at least ten bona fide high-affinity G protein-coupled receptors referred to as LPA1-5 and S1P1-5. These LPs are expressed throughout the body and are involved in a range of biological activities including normal development, as well as functioning in most organ systems. A growing number of biological functions have been uncovered in vivo using single- or multiple- null mice for each LP receptor. This review will focus on findings from in vivo as well as in vitro studies using genetic null mice for the LP receptors, LPA1,2,3 and S1P1,2,3,5, and for the LP producing enzymes, autotaxin and sphingosine kinase 1/2.
Keywords: LPA, S1P, sphingosine, lysophosphatidic acid, phospholipid, lysophospholipid
1. Introduction
Lysophospholipids (LPs) are a quantitatively minor lipid species that have been known for decades as components in the biosynthesis of cell membranes [1]. Two of the best characterized LPs are lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P). LPA and S1P are both abundant in blood (0.2 - 5 μM) as well as tissues (0.2 - 100 nmole/g) [2-6], and are produced by activated platelets and other cell types, including erythrocytes [5, 7, 8].
In addition to their roles as metabolic intermediates, these lipids also function as extracellular signals through G protein-coupled receptors (GPCRs) and there are currently 10 identified lysophospholipid receptors, named LPA1-5 and S1P1-5 [9-12]. Many of the LP receptors are expressed in various cell types and activate signaling pathways to be coupled with different G-proteins [9, 12, 13]. Consequently, LPA and S1P trigger a variety of biological activities under physiological and pathological situations, including vascular/nervous system development, reproduction, angiogenesis, immunity/transplantation, asthma, autoimmune diseases, cancer, cardiovascular diseases [14, 15], hearing loss [16-18], and pain transmission [19-27].
LPA and S1P receptors are expressed and function widely throughout the body, but the specific function of each receptor still needs to be elucidated. Using genetic null mice for individual LP receptors allows direct examination of their systemic roles in vivo and further study of LP-receptor specific signaling pathways in receptor-disrupted primary cells. Targeted gene disruption in mice has been utilized to uncover the biological functions of each lipid receptor-mediated signaling pathway in vivo and to identify the specific signaling pathways for each LP receptor in primary cells. In this review, we will focus on LP receptor functions from numerous studies that have created and studied genetic null mice. To date, single- or multiple-null mice have been reported for most of the known LPA and S1P receptors, including LPA1-, LPA2-, LPA3-, S1P1-, S1P2-, S1P3-, and S1P5-null mice. In addition, as signaling mediators in vivo, the production and degradation of lysophospholipids is enzymatically controlled, and two LP producing enzymes, sphingosine kinase 1/2 (Sphk1/2) and autotaxin (ATX), play a role in tuning the level of S1P and LPA, respectively [28-34]. Therefore, we will also discuss biological functions that have been revealed using genetic null mice for those enzymes.
2. LPA1
LPA1 was the first receptor identified for LPA [35]. It shows broad gene expression in organ tissues such as brain, heart, lung, stomach, small intestine, spleen, thymus, testis, and skeletal muscle in adult mice [36] and has also been detected in human tissues including brain, heart, placenta, spleen, kidney, colon, small intestine, prostate, testis, ovary, pancreas, skeletal muscle, and thymus [37]. LPA1 has been broadly studied using a heterologous expression system [36, 38]. Its signaling induces cell proliferation, serum-response element (SRE) activation, MAPK activation, adenylyl cyclase (AC) inhibition, PLC/PKC activation, Akt activation, and Rho activation through three types of G proteins, Gi/o, Gq, and G12/13 [39, 40].
The original LPA1-null mice were generated by deletion of exon 3 which contains the transmembrane domains I-VI [41]. About 50% of the LPA-null mice show perinatal lethality, and survivors exhibited abnormal phenotypes, such as reduced body size, craniofacial dysmorphism with shorter snouts and wider-spaced eyes, and reduced brain mass [12, 41]. The majority of LPA1-null mice pups also exhibited a suckling defect, which was evidenced by little or no milk in their stomachs. Impaired suckling behavior from defective olfaction, may explain to neonatal lethality and reduced body size [41].
Since LPA was known to induce Schwann cell survival through the Gi and phosphoinositide 3-kinase/Akt signaling pathway and overexpression of LPA1 decreases Schwann cell apoptosis in response to serum deprivation [42], the effects of LPA1 deficiency on Schwann cell survival was examined [41]. Young adult mouse sciatic nerve sections were examined for cellular apoptosis using in situ end labeling (ISEL+), which labels fragmented DNA [43]. There was an 80% increase in the percentage of ISEL+-positive cells in LPA1-null mice compared to that of wild-type, although overall, this represented a low frequency of 18% of Schwann cell apoptosis in LPA1-null mice compared to 10% in wild-type mice [41]. No grossly abnormal movement was observed [41], reflecting a need for more profound nerve fiber loss to reveal an overt phenotype. These data indicated in vivo effects on Schwann cells while indicating that loss of LPA1 is not sufficient to produce a more pronounced myelination defect.
LPA1 was identified in the cortical neurogenic region of the embryonic cerebral wall, the ventricular zone, which was reflected in its original name, “ventricular zone gene-1 (vzg-1)” [35]. When neural progenitor cells (NPCs) are exposed to LPA they show cell rounding, process retraction and retraction fibers. These cytoskeletal changes bear similarity to interkinetic nuclear migration in the ventricular zone (VZ) that is associated with neurogenesis [44]. LPA1 has been studied to understand the role of LPA in cortical development [44, 45]. No obvious abnormalities in the cerebral cortex were observed in LPA1-null mice, except for sporadic reductions in cerebral wall thickness in embryonic and neonatal LPA1-null mice [41, 46]. However, a recently identified variant of LPA1-null mice (called “Málaga variant” or maLPA1-null mice) has been reported [47]. These maLPA1-null mice were spontaneously and stably generated during extended breeding of the original LPA1-null mice [41, 47]. Like their predecessors, similar phenotypic abnormalities were observed in the maLPA1-null mice including reduced size and body mass, craniofacial defects such as shorter snouts and wider-spaced eyes, and reduced brain volume and mass [41, 47]. Most notably, the absence of LPA1 in the maLPA1-null mice results in defects of cortical development including reduced proliferative populations, and increased cortical cell death that results in a loss of cortical layer cellularity in adult mice [47].
Since LPA is known to be a lipid metabolite released following tissue injury, LPA1 plays an important role in the initiation of neuropathic pain [48, 49]. LPA1, unlike LPA2 or LPA3, is expressed in both dorsal root ganglion (DRG) and dorsal root neurons [48]. Using the antisense oligodeoxynucleotide (AS-ODN) for LPA1 and LPA1-null mice, it was found that LPA-induced mechanical allodynia and hyperalgesia is mediated in an LPA1-dependent manner [48]. Neuropathic pain is mediated by the Rho-ROCK pathway. Pretreatment with Clostridium botulinum C3 exoenzyme (BoTXC3, Rho inhibitor) or Y-27632 (ROCK inhibitor) completely abolished the allodynia and hyperalgesia in nerve-injured mice [48]. LPA also induced demyelination of the dorsal root, which was prevented by BoTXC3. The dorsal root demyelination by injury was not observed in LPA1-null mice or AS-ODN injected wild-type mice [48]. However, the precise relationship between demyelination and LPA-initiated neuropathic pain is still being determined. LPA signaling appears to induce important neuropathic pain markers such as protein kinase Cγ (PKCγ) and a voltage-gated calcium channel α2δ1 subunit (Caα2δ1) in an LPA1 and Rho-dependent manner [48].
Pulmonary fibrosis has been studied in LPA1-null mice because the level of LPA remarkably increases in bronchoalveolar lavage (BAL) fluid after bleomycin-induced lung injury [50]. LPA1 is the most highly expressed LPA receptor in lung fibroblasts among the 5 known LPA receptors (LPA1-5), and LPA-induced chemotaxis of mouse embryonic fibroblast (MEF) cells are mediated by LPA1 signaling [50, 51]. Migration of fibroblasts into the fibrin wound matrix is an essential step in the wound healing process in injured tissues [52]. Tager et al. [50] showed that bleomycin-challenged LPA1-null mice were markedly protected from pulmonary fibrosis. The mortality of wild-type mice at 21 days after administration of bleomycin was 50%, whereas LPA1-null mice were 0%. In addition, the accumulation of fibroblasts was dramatically reduced in the injured lungs of LPA1-null mice, and the persistent vascular leak produced by bleomycin-induced injury was notably attenuated in LPA1-null mice [50]. Thus, LPA1-mediated signaling was shown to have an important role between lung injury and the progression to pulmonary fibrosis. However, no significant differences in the numbers of total leukocytes, macrophages, or neutrophils were observed in the BAL of wild-type and LPA1-null mice [50].
Astrocytes have a response to cAMP-elevating reagents that changes morphology and induces the glial fibrillary acidic protein (GFAP), indicating astrocyte differentiation. LPA has been studied in cultured astrocytes which express the five known LPA receptors (LPA1-5) [53-55]. In the differentiated astrocytes induced by cAMP-elevating reagents, the levels of LPA2-4 were markedly reduced, whereas LPA1 was not affected [55]. In fact, LPA-induced DNA synthesis was notably reduced in the astrocytes derived from LPA1-null mice, indicating that LPA-induced astrocyte proliferation is mediated by LPA1 [55].
3. LPA2
LPA2 was identified from sequence homology searches using LPA1 [12, 56]. LPA2 is expressed in the embryonic brain, testis, kidney, lung, thymus, spleen, and stomach in mice [36]. In humans it is detected in the testis, pancreas, prostate, thymus, spleen, and peripheral blood leukocytes [37]. LPA2 induces cellular signaling through three G proteins, Gi/o, Gq, and G12/13, similar to LPA1 [36, 38].
LPA2-null mice were generated by deletion of exon 2, containing putative transmembrane domains I to VI [57]. LPA2-null mice were born normally, at the expected Mendelian frequency, and showed no obvious phenotypic abnormalities [57]. However, LPA-induced PLC activation and Ca2+ mobilization are notably reduced in MEF cells derived from LPA2-null mice [57]. When LPA1/LPA2 double-null mice were generated, no additional phenotypic abnormalities were detected when compared to LPA1 single-null mice [57]. Thus, LPA1 and LPA2 may have redundant functions in mediating LPA signaling, such as PLC activation, Ca2+ mobilization, proliferation, JNK activation, Akt activation, and stress fiber formation at least within MEFs [57]. Use of the double-null mutants in an ex vivo cerebral cortical culture system for studying embryonic neural functions of LPA signaling identified these receptors as important for LPA effects. In wildtype embryos, LPA exposure increased NPC terminal mitosis and decreased cell death resulting in induced cortical folding and thickening [46]. However, LPA1/LPA2 double-null mice lost these cortical growth responses [46].
Recently, cerebral cortical astrocytes have been studied towards understanding possible indirect effects of LPA on neuronal differentiation of cortical NPCs through requisite LPA1 and LPA2 signaling in astrocytes [58]. When neural progenitor cells were co-cultured with astrocytes that had been previously primed by LPA, the population of β-tubulin III positive neuron-like cells were increased by 41% without changing the overall cell number. Additionally, comparable effects were observed using conditioned-medium from LPA-primed astrocytes [58]. No significant effects were observed using cerebral cortical astrocytes derived from LPA1/LPA2 double-null mice, but the potency of astrocytes to induce neuronal differentiation of neural progenitor cells was rescued by expression of LPA1 or LPA2 into LPA1/LPA2 double-null astrocytes [58]. This suggests that astrocytes encouraged by LPA are able to produce a soluble factor, which can induce neuronal differentiation of neural progenitor cells by LPA receptor-mediated signaling [58].
4. LPA3
LPA3 was cloned as a third LPA receptor by degenerate polymerase chain reaction (PCR)-based cloning and homology searches [59, 60]. LPA3 is expressed in testis, kidney, lung, small intestine, heart, thymus, brain, and in the female reproductive system such as the oviduct, placenta, and uterus in adult mice [36]. It is also found in heart, pancreas, prostate, testis, lung, ovary, and brain in humans [59, 60]. Unlike LPA1 and LPA2, LPA3 couples to Gi/o and Gq protein, but not to G12/13 [40]. LPA3 signaling mediates PLC activation, Ca2+ mobilization, AC inhibition/activation, and MAPK activation [40, 59, 60].
LPA3-null mice were generated by targeted deletion of the fragment containing an untranslated region and the start codon in exon 2 [61]. LPA3-null mice were born with expected Mendelian frequency without sexual bias [61]. However, LPA3-deficient female mice showed delayed embryo implantation, altered embryo spacing, and reduced litter size [61]. Prostaglandins E2 and I2 (PGE2 and PGI2) are known to play a crucial role in embryo uterine implantation [62]. Those PGs (PGE2 and PGI2) are generated by cyclooxygenase-2 (COX-2). Interestingly, COX-2 mRNA levels were notably decreased in LPA3-null mice, with reduced levels of PGE2 and PGI2,caused by decreased COX-2 levels [61]. When PGE2 and carbaprostacyclin (a stable analogue of PGI2) were exogenously delivered in the LPA3-null female mice, delayed implantation was rescued but defects of embryo spacing were not rescued [61]. This indicates that LPA3-mediated signaling has a pivotal role on embryo implantation through PG signaling.
5. Autotaxin
ATX was originally characterized as a tumor cell-motility-stimulating factor [63]. Recently, ATX was shown to have a role as lysophospholipase D (lysoPLD), which converts lysophosphatidylcholine (LPC) to LPA, and potentially generates S1P from SPC [31, 32, 64]. Indeed, ATX can promote tumor cell motility through LPA1 [51], and can modulate S1P-mediated motility of cells positively or negatively depending on S1P receptor subtypes [64, 65]. ATX is broadly expressed, with highest levels detected in brain as well as placenta, ovary, and intestine [66-68]. In the adult brain, ATX is expressed in secretory epithelial cells, such as the choroids plexus, ciliary, iris pigment, and retinal pigment epithelial cells [66, 69].
Since ATX-null mice are embryonically lethal around embryonic days 9.5-10.5 with vascular defects in yolk sac and embryo, the physiological role of ATX was studied with ATX-null embryos [33, 70]. Early blood vessels formed normally, but maturation of vessels failed in ATX-null embryos [33]. In addition, ATX-null-embryos showed allantois malformation, neural tube defects, and asymmetric head folds [70]. The ATX activity and LPA levels in the plasma of heterozygotes was about half of wild-type, while S1P levels were unchanged [33, 70]. These data support ATX as a critical factor in vascular development through LPA signaling [33, 70], although its earlier reported functions as a nucleotide pyrophosphatase/phosphodiesterase may contribute to the null phenotype [71].
6. S1P1
S1P1 is highly expressed in spleen, brain, heart, lung, liver, and adipose tissues and moderately in thymus, kidney, skeletal muscle, and uterus of adult mice [72-74]. Notably, S1P1 is highly expressed in the developing central nervous system (CNS) and embryonic cardiovascular and skeletal structures [74, 75].
Of all currently characterized LP receptors, S1P1-null mice have the most severe phenotype that includes embryonic hemorrhage, resulting in the death of all S1P1-null embryos in utero between E12.5 to E14.5 [75]. Despite normal vasculogenesis and angiogenesis, S1P1-null embryos displayed defects in vascular maturation. This is caused by a deficiency in the ensheathment of the nascent blood vessel by vascular smooth muscle cells (VSMCs) and pericytes [75], pointing to the essential role of S1P1 in vascular development. Since deletion of S1P1 results in embryonic lethality, and thus cannot be used as a constitutive null, a conditional S1P1-knockout mouse has been created using the Cre-loxP system, which makes it possible to investigate S1P1-mediated defects in specific cell types. In fact, endothelial cell-specific deletion of S1P1 revealed that the vascular abnormality observed in conditional S1P1-knockout mice was due to a maturation defect in vascular endothelial cells, rather than in VSMCs [76].
One of the well-known roles of S1P1 is the regulation of cell motility. S1P enhanced migration of MEF cells that express three S1P receptors (S1P1,2,3) via Rac activation, but these outcomes were largely diminished in MEF cells from S1P1-null embryos. In addition, the critical role of S1P1 in migration through crosstalk with platelet-derived growth factor (PDGF) receptor has been evaluated. PDGF-enhanced migration of MEF cells was markedly reduced by the targeted deletion of S1P1 in MEF cells accompanied with the reduced Rac activation [77], implicating the S1P/S1P1 axis in the downstream signaling pathway of PDGF-induced migration. This suggests that this crosstalk may be important in vascular maturation since S1P1 or PDGFR single null mice show a similar lethal phenotype (vascular defect-related lethality) [75, 78, 79]. However, other data indicate a more complex picture, since loss of S1P1 did not block the PDGFR activation-enhanced migration of VSMC and MEF cells [80].
Another interesting role of S1P1 in migration has been reported recently. The S1P/S1P1 axis has a pivotal role in neural stem cell migration toward an injured brain area, indicating a therapeutic potential of this receptor and related signaling [81]. However, since this role was revealed by S1P1 silencing using lenti viral infection, it would be instructive to reproduce this result using conditional knockout mice to derive S1P1-null neural cells.
In the immune system, studies using conditional knockout mice or adoptive transfer of S1P1-deficient hematopoietic precursor cells present in the fetal liver revealed that S1P1 is important in lymphocyte trafficking [82-84]. T cell-specific deletion showed that S1P1 was crucial for mature T cell egress from the thymus to the blood and peripheral lymphoid organs [82]. Similarly, a study using fetal liver chimeric mice with specific deletion of S1P1 from hematopoietic cells showed the same defect in T cell egress as well as in B cells [84]. Moreover, normal mice with adoptively transferred S1P1-deficient T cells have a defect in exiting the secondary lymphoid organs, indicating that S1P1 is intrinsically required for appropriate lymphocyte egress [84]. These two reports strongly indicate a regulatory role of S1P1 in T lymphocyte egress. As in T cells, S1P1 is important for B cell trafficking. S1P1-null B cells that were adoptively transferred into normal mice did not exit from the secondary lymphoid organs [84]. More recently, these studies were extended to identify an important role for S1P1 in cell trafficking of antibody secreting cells (ASCs). Thus, loss of S1P1 in B cells did not affect the induction and localization into secondary lymphoid organs of IgG ASCs, but reduced recirculation and homing into blood and bone marrow, respectively [83].
7. S1P2
Expression of S1P2 is observed in a variety of organs, including heart, lung, thymus, brain, liver, kidney, spleen, adipose tissues, and all other tissues tested in adult mice [72, 73]. In the CNS, the S1P2 expression level is highest in the embryonic brain, decreases postnatally, and is almost undetectable in the adult brain [72, 85-88]. But even in adult mice, heart and lung have a high level of S1P2 expression.
S1P2-null mice that have been developed by three different groups do not have any obvious abnormalities in appearance, gross anatomy, or nervous system development. However, S1P2-null mice showed a slight, but significant, decrease in the litter size, and moreover, deletion of S1P2 and S1P3 resulted in a marked reduction of litter size, indicating a role for these receptors in the reproductive system despite no clear mechanism. In vivo or in vitro studies using S1P2-null mice have also revealed the role of S1P2 in vestibular-cochlear function [16-18], seizure activity [87], vascular function [89, 90], and wound healing [91]. Interestingly, a single point mutation in the S1P2-related mil gene led abnormal heart development in zebrafish [92], though this defect was not observed in S1P2-null mice [93].
Recently, three independent groups have reported that S1P2 is indispensable for maintenance of vestibular and auditory functions in vivo [16-18]. Two groups have revealed that S1P2-null mice have progressive vestibular defects as they age (more than 10 weeks old) [16, 17]. The S1P2-null mice exhibited persistent head tilt, defects in tail hanging posture, loss or reduction in swimming ability, reduction in rearing behavior, defects in contact righting, and loss of otoconia. All groups have shown the same results regarding hearing loss in S1P2-null mice [16-18]. Analyses of auditory brainstem response (ABR) or acoustic startle response (ASR) revealed profound deafness in young S1P2-null mice (3∼4 weeks old). This hearing loss is closely related to structural defects in the ear that include cochlea hair cell loss and vascular disturbance. These phenotypes are degenerative rather than developmental since both vestibular and auditory systems appear normal in young animals. The precise mechanism for this degenerative defect has yet to be identified.
S1P2-null mice in the C57BL/6 background display spontaneous and sporadic seizures accompanied by electrophysiological defects that are occasionally lethal [87]. The whole cell patch clamp approach revealed that hyperexcitability occurred in neocortical pyramidal neurons obtained from S1P2-null mice at a physiological condition, indicating the possible role of S1P2 in neuronal excitability. Further study is required to identify the specific roles of S1P2-mediated signaling in this process.
Another interesting finding is the role of S1P2 in vascular function. The involvement of S1P2 has been implicated in embryonic vascular development based on the finding that S1P1/S1P2/S1P3 triple-null mice have more severe vascular defects and lethality than S1P1 single-null mice [94]. This concept was supported in adults, since absence of S1P2 induces vascular dysfunction in adult mice [89]. The studies revealed that lacking S1P2 resulted in decreased vascular tone in vivo and blunted responsiveness to vasoconstrictor agents in vivo and ex vivo despite no morphological difference compared to wild-type mice. Another group has shown that S1P2-null mice have no significant abnormalities during normal vascular maturation of the retina, but S1P2 plays an important role under certain pathological conditions [90]. Hypoxia-induced intravitreal neovascularization was decreased in S1P2-null retinas, but there was an enhanced intraretinal revascularization in the S1P2-null [90]. Normalized angiogenesis shown in S1P2-null mice is closely related to the reduction of hypoxia-induced endothelial gaps, immune cell infiltration, and inflammatory responses [90]. Taken together, these studies reveal important roles for S1P2 both in normal vascular development and in pathological neovascularization.
S1P2-null mice have a defect in wound healing during liver injury [91]. This study demonstrated that S1P2 is involved in wound healing, hepatocyte proliferation, and matrix remodeling and not in the development of the liver injury. Despite no difference in necrosis, inflammation, and hepatocyte regeneration between wild-type and null mice, S1P2-null mice display a reduced accumulation of hepatic myofibroblasts (hMF) which are the cells responsible for wound healing and express S1P1-3. The in vitro study further revealed that S1P2-mediated wound healing was related to the mitogenic effect of S1P/S1P2 signaling in hepatocytes. It is also noteworthy that targeted disruption of S1P3 does not affect any aspect of this model, suggesting the unique role of S1P2 in wound healing following liver injury.
A significant defect of S1P/S1P2 signaling was found in vitro in MEF cells [73]. MEF cells from S1P2-null mice display decreased Rho activation in response to S1P but no effect on PLC activation, Ca2+ mobilization, and adenylyl cyclase inhibition, indicating a critical role of S1P2 in Rho activation. Like S1P1, S1P2 signaling also interfaces with PDGFR signaling, but these receptors have opposite roles. In contrast to S1P1 [77, 95], in vitro studies using MEF cells from S1P2-null mice demonstrated that S1P2 has a role as a negative regulator in PDGFR-mediated proliferation, migration, and Sphk1 induction [96]. These studies suggest that PDGFR dependent S1P production via Sphk1 can produce opposing signals, depending on which receptor, S1P1 and S1P2, is activated. It should be noted that in another study, PDGFR activation- and/or S1P-induced S1P2 activation promoted cell proliferation via Sphk in hepatic myofibroblasts, which were blunted in S1P2-null cells [91]. Therefore, the role of S1P/S1P2 in cell proliferation can be cell type specific.
8. S1P3
Expression of S1P3 has been reported in a variety of organs including spleen, heart, lung, thymus, kidney, testis, brain, and skeletal muscles in adult mice [72, 73], and in humans, in heart, placenta, kidney, liver, pancreas, skeletal muscle, lung, and brain [97].
S1P3-null mice are grossly normal, but lack some of the S1P-mediated responses. The first S1P3-null mice reported [73] showed that S1P3 loss results in viable and fertile mice that develop normally with no obvious phenotypic abnormalities except for the small, but significant, decrease in the litter size. This confirms that S1P3, unlike S1P1, is not required for normal organismal development and function. Despite no apparent phenotype, cells derived from S1P3-null mice have defects in S1P signaling, indicating functions for this receptor that have been revealed by perturbing the basal state of the animal in development, endothelial and epithelial barrier integrity, cardioprotection, and sepsis.
Signaling defects in vitro have been studied in MEF cells from S1P3-null mice [73]. S1P-induced PLC activation, Ca2+ increases, and inhibition of adenylyl cyclase that are observed in wild-type MEF cells are significantly reduced in S1P3-deficient MEF cells, but, in contrast to S1P2, S1P3 in MEF cells is not involved in Rho activation [73]. In addition to the PLC/Ca2+ signaling pathway, S1P3 is required for Akt activation in MEF cells, which is dependent on PDGFR activation [98]. Considering the negative role of S1P2 in PDGF-mediated migration [96], there may be a complex interplay between S1P- and PDGF-receptors.
S1P3-mediated increases in intracellular calcium and Akt activation have been reported in cardiac endothelial cells, which is connected to NO-mediated vasodilation [14]. An ex vivo study using aortae also showed the vasodilative effect of high-density lipoprotein (HDL), which was abolished by S1P3 deficiency, indicating a role for S1P3 in vascular tone regulation. In addition to the control of endothelial barrier integrity, S1P3 has an epithelial barrier function [99]. In S1P3-null mice, S1P-induced pulmonary leakage under normal and inflammatory conditions was abolished and was mediated by blocking the disruption of the alveolar epithelial junctions. These findings indicate an important role of S1P3 in the maintenance of epithelial barrier integrity.
Another interesting feature of S1P3 is its role in cardio protection. The first direct evidence was reported by Theilmeier et al. [15] who expanded their initial finding of the beneficial effect of HDL/S1P3 on NO-mediated vasodilation into reducing ischemia/reperfusion injury. Thus, in vivo studies using S1P3-null mice revealed that exogenously added HDL or its sphingolipid component, S1P, dramatically attenuated infarction size via S1P3. Presumably, this is mediated by the release of NO based on the vasodilative effect of HDL. In addition to the extrinsic pathway, the intrinsic S1P/S1P3 axis is important for cardio-protection. Another group reported that the protective effect of endogenously produced S1P in response to ischemia/reperfusion requires both S1P2 and S1P3 receptors since an increase in ischemic damage is not seen unless both S1P2 and S1P3 receptors are deleted [100]. Therefore, both extrinsic and intrinsic signaling pathways of S1P3 are related to cardio-protection.
Very recently, a new aspect of intrinsic S1P3 signaling was demonstrated [101]. In an lipopolysaccharide-induced septic model, activation of the protease activated receptor (PAR)1 in dendritic cells (DCs) is a main factor for inflammatory response-driven lethality. Interestingly, S1P3 acts as a downstream component in PAR1-mediated septic lethality, revealed by the adoptive transfer of DCs from PAR1- or S1P3-null mice or by chemical agonism of S1P3. Adoptive transfer of PAR1-deficient DCs into S1P3-null mice had no adverse effect on survival of these mice, but agoinst stimulation of S1P3 on adoptively transferred PAR1-deficient DCs was sufficient to induce lethality. They also revealed that Sphk1 is another component in this process. These findings identified a coordinated interplay among PAR1, Sphk1, and S1P3.
A series of studies using multiple S1P receptor null mice implicated their functional redundancy in vivo [93, 94]. S1P2/S1P3 double-null mice showed a clear phenotype of reduced litter sizes compared to single null crosses owing to perinatal lethality, although double null survivors lacked any obvious phenotype [93]. This protection is not present in single receptor-null mice under these conditions. Another study using S1P1/S1P2/S1P3 triple-null mice showed more severe defects in vascular development compared to S1P1 single-null mice and earlier embryonic lethality at E10.5-11.5 [94]. However, S1P2 and S1P3 single-null mice show no evidence of this phenotype [73, 87]. At a cellular level, S1P2 deletion, not S1P3 deletion, partially impaired Rho activation, but deletion of both receptors completely abolished it in MEF cells [93]. Taken together, these studies indicate the coordination of S1P signaling by these three S1P receptors.
9. S1P5
Expression of S1P5 is restricted to specific tissues including brain, spleen, and peripheral blood leukocytes in humans, and brain, skin, and spleen in the rat and mouse [73, 102, 103]. S1P5-null mice developed normally and were fertile [104]. Functional studies using these null mice have been reported in oligodendrocytes [104] and natural killer (NK) cells [105] where S1P5 is highly expressed.
S1P5 is highly expressed in brain white matter, especially in oligodendrocytes, the main myelination cell type in the CNS [103]. However, S1P5-null mice do not have any evident myelination defects, although immature oligodendrocytes that lacked S1P5 by siRNA silencing have lower responses to S1P in vitro [104]. Additionally, there is no apparent behavioral deficit in these mice. Nevertheless, further studies on the function of S1P5 in the brain, especially in the myelination process, may reveal other functions that might be expected in view of the abundance of S1P5 in oligodendrocyte lineages [103, 104]. In vitro studies using siRNA-based knock-down of S1P5 in these cells has shown migration defects [106]. It is also possible that the S1P/S1P5 axis may be providing a beneficial effect against demyelinating injuries, in addition to normal physiological processes.
S1P5 is also highly expressed in mouse and human NK cells, indicating that this receptor-mediated signaling is important for the immune system [105]. This study demonstrated that S1P5 is involved in NK cell trafficking in steady-state and inflammatory situations. S1P5-null mice have a lower population of NK cells in blood, spleen, and lungs and a higher population in bone marrow and lymph nodes compared to WT mice. Additionally, inflammation induced an expansion of NK cells in inflamed livers of WT, but in S1P5-null mice, this homing process was defective. Even though the exact mechanism for these phenotypes is not yet clear, it appears that S1P5 has a prominent role in NK cell trafficking in vivo.
10. Sphk1/2
Sphks are highly conserved enzymes found in throughout phylogeny [107-110] and produce S1P by catalyzing the phosphorylation of sphingosine. To date, two distinct isoforms of Sphk have been identified in mammals, referred to as Sphk1 and Sphk 2 [28, 30]. Northern blot and quantitative PCR analyses have revealed that Sphk1 and Sphk2 differ in developmental and tissue expression [30, 111]. Sphk1 mRNA was high at E7 and then decreased, but Sphk2 mRNA expression was still high in later embryonic development [30]. In adult mouse tissues, Sphk1 was highest in lung and spleen, but not in liver, whereas Sphk2 was predominantly expressed in liver and heart [30, 111]. However, the expression of both enzymes was observed in most tissues despite the different levels of expression, including brain, kidney, blood, and lymph nodes and the activity of both enzymes was detected in all mouse tissues tested.
Individual loss of either Sphk1 or Sphk2 does not have an abnormal phenotype, but, Sphk1/2 double-null mice are lethal prior to E13.5 with severe vascular and neural tube defects, resembling S1P receptor null mice [112, 113]. Again this indicates the requirement of S1P in the development of the vascular and central nervous systems and reveals the functional redundancy of the two Sphk isoforms.
Further analysis of Sphk deficient mice revealed early pregnancy loss by vascular defects. Sphk1-/-Sphk2+/- mutant females, but not mutant males nor any other mutant female combination (Sphk1-/-Sphk2+/+ and Sphk1+/-Sphk2-/-), were infertile. The infertility was caused by increased cell death in decidual cells and massive rupture of decidual blood vessels, leading to early embryonic lethality [114]. Interestingly, identification of similar reproductive defects in Drosophila Sphk mutants identified the highly conserved roles of these enzymes [107, 115]. These findings suggest the importance of sphingolipid metabolism in reproduction.
Sphk1/2 have been verified to be critical for producing S1P in vivo. In mice, S1P was not detectable in embryos deficient for both Sphk1 and Sphk2, but deletion of Sphk1 caused a reduction in S1P plasma levels to 50% of those observed in WT mice [112, 113], indicating that Sphk2 likely accounts for the remaining levels of S1P in Sphk1-null mice, at least within plasma. A recent report verified the cell type for S1P production by these enzymes: conditional gene deletion of both Sphk1 and Sphk2 identified erythrocytes as a major source of S1P in plasma, while lymph S1P is produced by an as yet unidentified radiation-resistant cell population [116, 117].
A well-studied function of Sphk1/2 is the regulation of immune system lymphocyte trafficking, especially as revealed by FTY720 effects, an experimental prodrug that can produce lymphopenia and which has been reviewed in great detail elsewhere [20, 23, 118]. FTY720 is known to be phosphorylated by Sphk1/2 in vivo and exerts its effect by interacting with four of the five known S1P receptors, namely S1P1, S1P3, S1P4, and S1P5 [20, 119]. In vivo studies using genetic null mutant mice for Sphks have revealed that Sphk2 is the major isoform for FTY720 phosphorylation. FTY720 caused lymphopenia in Sphk1-null mice, but not in Sphk2-null mice, indicating that Sphk2, and not Sphk1, is the primary kinase responsible for phosphorylating FTY720 in vivo [112, 120, 121]. Besides their roles in FTY720 efficacy, these enzymes are also important physiologically for lymphocyte trafficking. Conditional deletion of Sphk1 and 2 in mice prevented lymphocyte egress from the thymus and peripheral lymphoid organs via the reduction of plasma and lymph S1P levels [116]. In addition, surface lymphocyte expression of S1P1 isolated from lymphoid organs of Sphk deficient mice is high compared to WT mice, suggesting a coordinated interplay between receptor expression and available S1P levels [116]. Sphk1 is also involved in the PAR1/S1P3 regulation of dendritic cells that is important for systemic inflammation and lethality in a sepsis model [101].
The role of Sphks in mast cells, another immune cell type, has been also revealed [122]. Studies using liver-derived mast cells that were deficient in Sphk1 and/or Sphk2 demonstrated a role for Sphk2, not Sphk1, in intracellular S1P production and consequent mast cell responsiveness, including Ca2+ influx, cytokine production, and degranulation. These findings indicate an important role of Sphk2 as an intrinsic regulator in mast cell function. However, the reduction of circulating extrinsic S1P levels in Sphk1-null mice and the resistance of these mice to anaphylaxis contrasts with conditions observed in Sphk2-null mice that show an increase in circulating extrinsic S1P levels and no resistance to anaphylaxis. These results indicate an extrinsic role of S1P regulated by Sphk1 in mast cell responsiveness. Furthermore, Sphk2-deficient mice with one functional allele for Sphk1 (Sphk2-/-Sphk1+/-) prevented Sphk2-null phenotype, indicating that a Sphk1-mediated increase in circulating S1P levels can rescue the intrinsic defects of Sphk2-null mice in mast cells. [122]. Taken together, these reports suggest different roles of Sphk1 and Sphk2 in regulating mast cell function by both intrinsic and extrinsic control of S1P levels.
11. Concluding Remarks
Studies on the role of LPs are increasing, and significant effort has been made to elucidate their biological functions by taking advantage of genetic null mice. Herein we summarized the biological function of LP receptors revealed by knockouts (LPA1,2,3 and S1P1,2,3,5) and the related important LP producing enzymes (ATX and Sphk1/2). Biological functions identified in these studies are pervasive, including normal development of the vascular and nervous systems, as well as proper functioning of the cardiovascular, immune, reproductive, and nervous systems (summarized in Table 1). Some of these functions are expected based on in vitro findings, but there are still discrepancies between in vitro and in vivo studies, which should be clarified in the future. Further studies using multiple receptor-null mice could better elucidate this interaction. In fact, studies using LPA1/LPA2, S1P1/S1P2/S1P3 or S1P2/S1P3 multiple-null mice have verified some of the specific biological roles of each receptor and uncovered hidden functions in the single-null mice. Likewise, it may prove useful to generate multiple-null mice by crossing single LPA and S1P receptor-null mice since the interplay or compensation between LPA and S1P receptors is likely to be present. It would also be of interest to identify the interplay between LP receptors- and other receptor-mediated signaling mechanisms. One might also consider the coordinated interplay of the LP producing or degrading enzymes with LP receptors by the regulation of intracellular, as well as extracellular LP levels. Null mice for LPA4, LPA5, and S1P4 will surely follow in the near future. In addition, LP receptors have been regarded as viable therapeutic targets in a growing number of diseases, and the use of LP receptor-mutant mice should aid in identifying and validating involved receptors and mechanisms for future therapies.
Table 1. Summary for defects in biological function of LP receptor null mice.
gene | Phenotypes | Revealed biological functions | Refs. |
---|---|---|---|
lpa1 | - 50% of perinatal lethality - reduced body size - craniofacial dysmorphism - reduced brain mass - impaired suckling behavior - increase in SC apoptosis - defects in cortical development |
- initiation of neuropathic pain - pulmonary fibrosis - astrocyte proliferation - migration of MEF cells - indirect effect on neuronal differentiation |
[41] [47] [48] [46, 50, 55, 58] |
lpa2 | - no abnormalities | - indirect effect on neuronal differentiation - signaling in MEF cells |
[57, 58] |
lpa1/2 | - same phenotypes with LPA1-null mice | - cortical growth | [46] |
lpa3 | - delayed implantation - altered embryo spacing - reduced litter size |
[61] | |
s1p1 | - complete embryonic lethality (defect in vascular endothelial cell maturation) | - migration of MEF and neural stem cells - trafficking of T- and B-cells a, b |
[75] [76] [81] [77] [82-84] |
s1p2 | - reduced litter size - vestibular defects - hearing loss - sporadic seizures (C57BL/6 mice only) - vascular dysfunction in adult mice |
- vasoconstriction - angiogenesis under hypoxia - wound healing during liver injury - signaling in MEF cells - blockade of PDGFR activation-induced proliferation and migration in MEF cells - enhancement of PDGF- or S1P-induced proliferation in hepatic myofibroblast |
[16-18] [87] [89] [90] [91] [96] |
s1p3 | - reduced litter size - disruption of alveolar epithelial junctions |
- signaling in MEF cells - HDL-induced vasodilation - disruption of alveolar epithelial barrier function - cardioprotection by HDL or S1P against ischemia/reperfusion - downstream signal of PAR1-mediated sepsisc |
[73] [14] [99] [15] (Nature 2008) |
s1p2/3 | - reduced litter size | - cardioprotection against ischemia/reperfusion | [100] [93] |
s1p1/2/3 | - embryonic lethality | [94] | |
s1p5 | - defect in trafficking of NK cells | [105] | |
ATX | - embryonic lethality (defect in vascular vessel maturation) | [33, 70] | |
Sphk1 | - no abnormalities - reproductive defects d |
- S1P production | [112, 113] [114] |
Sphk2 | - no abnormalities | - S1P production - FTY720-induced lymphocyte trafficking |
[112, 113, 120, 121] |
Sphk1/2 | - embryonic lethality - defect in lymphocyte trafficking a |
- S1P production in erythrocytes a - downstream signal of PAR1-mediated sepsis c |
[101, 112, 113] [116] |
finding from study using conditional knockout mice.
finding from study using adoptive cell transfer of S1P1-null lymphocytes.
finding from study using adoptive cell transfer of S1P3-null dendritic cells.
this defect was observed only in embryos from Sphk1-/-Sphk2+/- mutant females.
Acknowledgements
The authors thank Deron Herr and Danielle Letourneau for critical reading of this manuscript. This work was supported by National Institutes of Health grants (MH015699, NS048478, HD050685, DA019674) to Jerold Chun.
Footnotes
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
References
- [1].Hanahan DJ. A guide to phospholipid chemistry. Oxford University Press; New York: 1997. [Google Scholar]
- [2].Das AK, Hajra AK. Quantification, characterization and fatty acid composition of lysophosphatidic acid in different rat tissues. Lipids. 1989;24:329–333. doi: 10.1007/BF02535172. [DOI] [PubMed] [Google Scholar]
- [3].Yatomi Y, Welch RJ, Igarashi Y. Distribution of sphingosine 1-phosphate, a bioactive sphingolipid, in rat tissues. FEBS Lett. 1997;404:173–174. doi: 10.1016/s0014-5793(97)00121-x. [DOI] [PubMed] [Google Scholar]
- [4].Berdyshev EV, Gorshkova IA, Garcia JG, Natarajan V, Hubbard WC. Quantitative analysis of sphingoid base-1-phosphates as bisacetylated derivatives by liquid chromatography-tandem mass spectrometry. Anal. Biochem. 2005;339:129–136. doi: 10.1016/j.ab.2004.12.006. [DOI] [PubMed] [Google Scholar]
- [5].Yatomi Y, Ozaki Y, Ohmori T, Igarashi Y. Sphingosine 1-phosphate: synthesis and release. Prostaglandins. 2001;64:107–122. doi: 10.1016/s0090-6980(01)00103-4. [DOI] [PubMed] [Google Scholar]
- [6].Baker DL, Desiderio DM, Miller DD, Tolley B, Tigyi GJ. Direct quantitative analysis of lysophosphatidic acid molecular species by stable isotope dilution electrospray ionization liquid chromatography-mass spectrometry. Anal. Biochem. 2001;292:287–295. doi: 10.1006/abio.2001.5063. [DOI] [PubMed] [Google Scholar]
- [7].Hanel P, Andreani P, Graler MH. Erythrocytes store and release sphingosine 1-phosphate in blood. Faseb J. 2007;21:1202–1209. doi: 10.1096/fj.06-7433com. [DOI] [PubMed] [Google Scholar]
- [8].Pages C, Simon MF, Valet P, Saulnier-Blache JS. Lysophosphatidic acid synthesis and release. Prostaglandins Other Lipid Mediat. 2001;64:1–10. doi: 10.1016/s0090-6980(01)00110-1. [DOI] [PubMed] [Google Scholar]
- [9].Anliker B, Chun J. Lysophospholipid G protein-coupled receptors. J. Biol. Chem. 2004;279:20555–20558. doi: 10.1074/jbc.R400013200. [DOI] [PubMed] [Google Scholar]
- [10].Lee CW, Rivera R, Gardell S, Dubin AE, Chun J. GPR92 as a new G12/13- and Gq-coupled lysophosphatidic acid receptor that increases cAMP, LPA5. J. Biol. Chem. 2006;281:23589–23597. doi: 10.1074/jbc.M603670200. [DOI] [PubMed] [Google Scholar]
- [11].Chun J, Goetzl EJ, Hla T, Igarashi Y, Lynch KR, Moolenaar W, Pyne S, Tigyi G. International Union of Pharmacology. XXXIV. Lysophospholipid receptor nomenclature. Pharmacol. Rev. 2002;54:265–269. doi: 10.1124/pr.54.2.265. [DOI] [PubMed] [Google Scholar]
- [12].Ishii I, Fukushima N, Ye X, Chun J. Lysophospholipid receptors: signaling and biology. Annu. Rev. Biochem. 2004;73:321–354. doi: 10.1146/annurev.biochem.73.011303.073731. [DOI] [PubMed] [Google Scholar]
- [13].Anliker B, Chun J. Cell surface receptors in lysophospholipid signaling. Semin. Cell. Dev. Biol. 2004;15:457–465. doi: 10.1016/j.semcdb.2004.05.005. [DOI] [PubMed] [Google Scholar]
- [14].Nofer JR, van der Giet M, Tolle M, Wolinska I, von Wnuck Lipinski K, Baba HA, Tietge UJ, Godecke A, Ishii I, Kleuser B, Schafers M, Fobker M, Zidek W, Assmann G, Chun J, Levkau B. HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3. J. Clin. Invest. 2004;113:569–581. doi: 10.1172/JCI18004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [15].Theilmeier G, Schmidt C, Herrmann J, Keul P, Schafers M, Herrgott I, Mersmann J, Larmann J, Hermann S, Stypmann J, Schober O, Hildebrand R, Schulz R, Heusch G, Haude M, von Wnuck Lipinski K, Herzog C, Schmitz M, Erbel R, Chun J, Levkau B. High-density lipoproteins and their constituent, sphingosine-1-phosphate, directly protect the heart against ischemia/reperfusion injury in vivo via the S1P3 lysophospholipid receptor. Circulation. 2006;114:1403–1409. doi: 10.1161/CIRCULATIONAHA.105.607135. [DOI] [PubMed] [Google Scholar]
- [16].MacLennan AJ, Benner SJ, Andringa A, Chaves AH, Rosing JL, Vesey R, Karpman AM, Cronier SA, Lee N, Erway LC, Miller ML. The S1P2 sphingosine 1-phosphate receptor is essential for auditory and vestibular function. Hear Res. 2006;220:38–48. doi: 10.1016/j.heares.2006.06.016. [DOI] [PubMed] [Google Scholar]
- [17].Herr DR, Grillet N, Schwander M, Rivera R, Muller U, Chun J. Sphingosine 1-phosphate (S1P) signaling is required for maintenance of hair cells mainly via activation of S1P2. J. Neurosci. 2007;27:1474–1478. doi: 10.1523/JNEUROSCI.4245-06.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [18].Kono M, Belyantseva IA, Skoura A, Frolenkov GI, Starost MF, Dreier JL, Lidington D, Bolz SS, Friedman TB, Hla T, Proia RL. Deafness and stria vascularis defects in S1P2 receptor-null mice. J. Biol. Chem. 2007;282:10690–10696. doi: 10.1074/jbc.M700370200. [DOI] [PubMed] [Google Scholar]
- [19].Schwab SR, Cyster JG. Finding a way out: lymphocyte egress from lymphoid organs. Nat. Immunol. 2007;8:1295–1301. doi: 10.1038/ni1545. [DOI] [PubMed] [Google Scholar]
- [20].Brinkmann V. Sphingosine 1-phosphate receptors in health and disease: mechanistic insights from gene deletion studies and reverse pharmacology. Pharmacol. The.r. 2007;115:84–105. doi: 10.1016/j.pharmthera.2007.04.006. [DOI] [PubMed] [Google Scholar]
- [21].Chun J, Rosen H. Lysophospholipid receptors as potential drug targets in tissue transplantation and autoimmune diseases. Curr. Pharm. Des. 2006;12:161–171. doi: 10.2174/138161206775193109. [DOI] [PubMed] [Google Scholar]
- [22].Jolly PS, Rosenfeldt HM, Milstien S, Spiegel S. The roles of sphingosine-1-phosphate in asthma. Mol. Immunol. 2002;38:1239–1245. doi: 10.1016/s0161-5890(02)00070-6. [DOI] [PubMed] [Google Scholar]
- [23].Gardell SE, Dubin AE, Chun J. Emerging medicinal roles for lysophospholipid signaling. Trends Mol. Med. 2006;12:65–75. doi: 10.1016/j.molmed.2005.12.001. [DOI] [PubMed] [Google Scholar]
- [24].Rivera R, Chun J. Potential therapeutic roles of lysophospholipid signaling in autoimmune-related diseases. Future Lipidol. 2007;2:535–545. [Google Scholar]
- [25].Mills GB, Moolenaar WH. The emerging role of lysophosphatidic acid in cancer. Nat. Rev. Cancer. 2003;3:582–591. doi: 10.1038/nrc1143. [DOI] [PubMed] [Google Scholar]
- [26].Karliner JS. Mechanisms of cardioprotection by lysophospholipids. J. Cell. Biochem. 2004;92:1095–1103. doi: 10.1002/jcb.20129. [DOI] [PubMed] [Google Scholar]
- [27].Siess W. Athero- and thrombogenic actions of lysophosphatidic acid and sphingosine-1-phosphate. Biochim. Biophys. Acta. 2002;1582:204–215. doi: 10.1016/s1388-1981(02)00173-7. [DOI] [PubMed] [Google Scholar]
- [28].Kohama T, Olivera A, Edsall L, Nagiec MM, Dickson R, Spiegel S. Molecular cloning and functional characterization of murine sphingosine kinase. J. Biol. Chem. 1998;273:23722–23728. doi: 10.1074/jbc.273.37.23722. [DOI] [PubMed] [Google Scholar]
- [29].Alemany R, van Koppen CJ, Danneberg K, Ter Braak M, Meyer Zu Heringdorf D. Regulation and functional roles of sphingosine kinases. Naunyn Schmiedebergs Arch. Pharmacol. 2007;374:413–428. doi: 10.1007/s00210-007-0132-3. [DOI] [PubMed] [Google Scholar]
- [30].Liu H, Sugiura M, Nava VE, Edsall LC, Kono K, Poulton S, Milstien S, Kohama T, Spiegel S. Molecular cloning and functional characterization of a novel mammalian sphingosine kinase type 2 isoform. J. Biol. Chem. 2000;275:19513–19520. doi: 10.1074/jbc.M002759200. [DOI] [PubMed] [Google Scholar]
- [31].Umezu-Goto M, Kishi Y, Taira A, Hama K, Dohmae N, Takio K, Yamori T, Mills GB, Inoue K, Aoki J, Arai H. Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production. J. Cell Biol. 2002;158:227–233. doi: 10.1083/jcb.200204026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [32].Tokumura A, Majima E, Kariya Y, Tominaga K, Kogure K, Yasuda K, Fukuzawa K. Identification of human plasma lysophospholipase D, a lysophosphatidic acid-producing enzyme, as autotaxin, a multifunctional phosphodiesterase. J. Biol. Chem. 2002;277:39436–39442. doi: 10.1074/jbc.M205623200. [DOI] [PubMed] [Google Scholar]
- [33].Tanaka M, Okudaira S, Kishi Y, Ohkawa R, Iseki S, Ota M, Noji S, Yatomi Y, Aoki J, Arai H. Autotaxin stabilizes blood vessels and is required for embryonic vasculature by producing lysophosphatidic acid. J. Biol. Chem. 2006;281:25822–25830. doi: 10.1074/jbc.M605142200. [DOI] [PubMed] [Google Scholar]
- [34].Aoki J. Mechanisms of lysophosphatidic acid production. Semin. Cell. Dev. Biol. 2004;15:477–489. doi: 10.1016/j.semcdb.2004.05.001. [DOI] [PubMed] [Google Scholar]
- [35].Hecht JH, Weiner JA, Post SR, Chun J. Ventricular zone gene-1 (vzg-1) encodes a lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral cortex. J. Cell Biol. 1996;135:1071–1083. doi: 10.1083/jcb.135.4.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [36].Contos JJ, Ishii I, Chun J. Lysophosphatidic acid receptors. Mol. Pharm. 2000;58:1188–1196. doi: 10.1124/mol.58.6.1188. [DOI] [PubMed] [Google Scholar]
- [37].An S, Bleu T, Hallmark OG, Goetzl EJ. Characterization of a novel subtype of human G protein-coupled receptor for lysophosphatidic acid. J. Biol. Chem. 1998;273:7906–7910. doi: 10.1074/jbc.273.14.7906. [DOI] [PubMed] [Google Scholar]
- [38].Fukushima N, Ishii I, Contos JJ, Weiner JA, Chun J. Lysophospholipid receptors. Ann. Rev. Pharm. Toxicol. 2001;41:507–534. doi: 10.1146/annurev.pharmtox.41.1.507. [DOI] [PubMed] [Google Scholar]
- [39].Fukushima N, Kimura Y, Chun J. A single receptor encoded by vzg-1/lpA1/edg-2 couples to G proteins and mediates multiple cellular responses to lysophosphatidic acid. Proc. Natl. Acad. Sci. U S A. 1998;95:6151–6156. doi: 10.1073/pnas.95.11.6151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [40].Ishii I, Contos JJ, Fukushima N, Chun J. Functional comparisons of the lysophosphatidic acid receptors, LP(A1)/VZG-1/EDG-2, LP(A2)/EDG-4, and LP(A3)/EDG-7 in neuronal cell lines using a retrovirus expression system. Mol. Pharm. 2000;58:895–902. doi: 10.1124/mol.58.5.895. [DOI] [PubMed] [Google Scholar]
- [41].Contos JJ, Fukushima N, Weiner JA, Kaushal D, Chun J. Requirement for the lpA1 lysophosphatidic acid receptor gene in normal suckling behavior. Proc. Natl. Acad. Sci. U S A. 2000;97:13384–13389. doi: 10.1073/pnas.97.24.13384. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [42].Weiner JA, Chun J. Schwann cell survival mediated by the signaling phospholipid lysophosphatidic acid. Proc. Natl. Acad. Sci. U S A USA. 1999;96:5233–5238. doi: 10.1073/pnas.96.9.5233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [43].Blaschke AJ, Staley K, Chun J. Widespread programmed cell death in proliferative and postmitotic regions of the fetal cerebral cortex. Development. 1996;122:1165–1174. doi: 10.1242/dev.122.4.1165. [DOI] [PubMed] [Google Scholar]
- [44].Fukushima N, Weiner JA, Chun J. Lysophosphatidic acid (LPA) is a novel extracellular regulator of cortical neuroblast morphology. Dev. Biol. 2000;228:6–18. doi: 10.1006/dbio.2000.9930. [DOI] [PubMed] [Google Scholar]
- [45].Dubin AE, Bahnson T, Weiner JA, Fukushima N, Chun J. Lysophosphatidic acid stimulates neurotransmitter-like conductance changes that precede GABA and L-glutamate in early, presumptive cortical neuroblasts. J. Neurosci. 1999;19:1371–1381. doi: 10.1523/JNEUROSCI.19-04-01371.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [46].Kingsbury MA, Rehen SK, Contos JJ, Higgins CM, Chun J. Non-proliferative effects of lysophosphatidic acid enhance cortical growth and folding. Nature Neruo. 2003;6:1292–1299. doi: 10.1038/nn1157. [DOI] [PubMed] [Google Scholar]
- [47].Estivill-Torrus G, Llebrez-Zayas P, Matas-Rico E, Santin L, Pedraza C, De Diego I, Del Arco I, Fernandez-Llebrez P, Chun J, De Fonseca FR. Absence of LPA1 Signaling Results in Defective Cortical Development. Cereb Cortex. 2007 doi: 10.1093/cercor/bhm132. in press. [DOI] [PubMed] [Google Scholar]
- [48].Inoue M, Rashid MH, Fujita R, Contos JJ, Chun J, Ueda H. Initiation of neuropathic pain requires lysophosphatidic acid receptor signaling. Nature Med. 2004;10:712–718. doi: 10.1038/nm1060. [DOI] [PubMed] [Google Scholar]
- [49].Ueda H. Molecular mechanisms of neuropathic pain-phenotypic switch and initiation mechanisms. Pharm. Therapeutics. 2006;109:57–77. doi: 10.1016/j.pharmthera.2005.06.003. [DOI] [PubMed] [Google Scholar]
- [50].Tager AM, Lacamera P, Shea BS, Campanella GS, Selman M, Zhao Z, Polosukhin V, Wain J, Karimi-Shah BA, Kim ND, Hart WK, Pardo A, Blackwell TS, Xu Y, Chun J, Luster AD. The lysophosphatidic acid receptor LPA(1) links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak. Nature Med. 2008;14:45–54. doi: 10.1038/nm1685. [DOI] [PubMed] [Google Scholar]
- [51].Hama K, Aoki J, Fukaya M, Kishi Y, Sakai T, Suzuki R, Ohta H, Yamori T, Watanabe M, Chun J, Arai H. Lysophosphatidic acid and autotaxin stimulate cell motility of neoplastic and non-neoplastic cells through LPA1. J. Biol. Chem. 2004;279:17634–17639. doi: 10.1074/jbc.M313927200. [DOI] [PubMed] [Google Scholar]
- [52].Martin P. Wound healing--aiming for perfect skin regeneration. Science. 1997;276:75–81. doi: 10.1126/science.276.5309.75. [DOI] [PubMed] [Google Scholar]
- [53].Rao TS, Lariosa-Willingham KD, Lin FF, Palfreyman EL, Yu N, Chun J, Webb M. Pharmacological characterization of lysophospholipid receptor signal transduction pathways in rat cerebrocortical astrocytes. Brain Res. 2003;990:182–194. doi: 10.1016/s0006-8993(03)03527-3. [DOI] [PubMed] [Google Scholar]
- [54].Sorensen SD, Nicole O, Peavy RD, Montoya LM, Lee CJ, Murphy TJ, Traynelis SF, Hepler JR. Common signaling pathways link activation of murine PAR-1, LPA, and S1P receptors to proliferation of astrocytes. Mol. Pharmcol. 2003;64:1199–1209. doi: 10.1124/mol.64.5.1199. [DOI] [PubMed] [Google Scholar]
- [55].Shano S, Moriyama R, Chun J, Fukushima N. Lysophosphatidic acid stimulates astrocyte proliferation through LPA(1) Neurochem. Intl. 2008;52:216–220. doi: 10.1016/j.neuint.2007.07.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [56].An S, Bleu T, Hallmark OG, Goetzl EJ. Characterization of a novel subtype of human G protein-coupled receptor for lysophosphatidic acid. J. Biol. Chem. 1998;273:7906–7910. doi: 10.1074/jbc.273.14.7906. [DOI] [PubMed] [Google Scholar]
- [57].Contos JJ, Ishii I, Fukushima N, Kingsbury MA, Ye X, Kawamura S, Brown JH, Chun J. Characterization of lpa(2) (Edg4) and lpa(1)/lpa(2) (Edg2/Edg4) lysophosphatidic acid receptor knockout mice: signaling deficits without obvious phenotypic abnormality attributable to lpa(2) Mol. Cell. Biol. 2002;22:6921–6929. doi: 10.1128/MCB.22.19.6921-6929.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [58].Spohr TC, Choi JW, Gardell SE, Herr D, Rehen SK, Gomes FC, Chun J. LPA receptor-dependent secondary effects via astrocytes promote neuronal differentiation. J. Biol. Chem. 2008 doi: 10.1074/jbc.M707758200. in press. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [59].Bandoh K, Aoki J, Hosono H, Kobayashi S, Kobayashi T, Murakami-Murofushi K, Tsujimoto M, Arai H, Inoue K. Molecular cloning and characterization of a novel human G-protein-coupled receptor, EDG7, for lysophosphatidic acid. J. Biol. Chem. 1999;274:27776–27785. doi: 10.1074/jbc.274.39.27776. [DOI] [PubMed] [Google Scholar]
- [60].Im DS, Heise CE, Harding MA, George SR, O’Dowd BF, Theodorescu D, Lynch KR. Molecular cloning and characterization of a lysophosphatidic acid receptor, Edg-7, expressed in prostate. Mol. Pharmacol. 2000;57:753–759. [PubMed] [Google Scholar]
- [61].Ye X, Hama K, Contos JJ, Anliker B, Inoue A, Skinner MK, Suzuki H, Amano T, Kennedy G, Arai H, Aoki J, Chun J. LPA3-mediated lysophosphatidic acid signalling in embryo implantation and spacing. Nature. 2005;435:104–108. doi: 10.1038/nature03505. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [62].Shah BH, Catt KJ. Roles of LPA3 and COX-2 in implantation. Trends Endocrinol. Metabolism. 2005;16:397–399. doi: 10.1016/j.tem.2005.09.009. [DOI] [PubMed] [Google Scholar]
- [63].Stracke ML, Krutzsch HC, Unsworth EJ, Arestad A, Cioce V, Schiffmann E, Liotta LA. Identification, purification, and partial sequence analysis of autotaxin, a novel motility-stimulating protein. J. Biol. Chem. 1992;267:2524–2529. [PubMed] [Google Scholar]
- [64].Clair T, Aoki J, Koh E, Bandle RW, Nam SW, Ptaszynska MM, Mills GB, Schiffmann E, Liotta LA, Stracke ML. Autotaxin hydrolyzes sphingosylphosphorylcholine to produce the regulator of migration, sphingosine-1-phosphate. Cancer Res. 2003;63:5446–5453. [PubMed] [Google Scholar]
- [65].Takuwa Y. Subtype-specific differential regulation of Rho family G proteins and cell migration by the Edg family sphingosine-1-phosphate receptors. Biochim. Biophys. Acta. 2002;1582:112–120. doi: 10.1016/s1388-1981(02)00145-2. [DOI] [PubMed] [Google Scholar]
- [66].Fuss B, Baba H, Phan T, Tuohy VK, Macklin WB. Phosphodiesterase I, a novel adhesion molecule and/or cytokine involved in oligodendrocyte function. J Neurosci. 1997;17:9095–9103. doi: 10.1523/JNEUROSCI.17-23-09095.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [67].Lee HY, Murata J, Clair T, Polymeropoulos MH, Torres R, Manrow RE, Liotta LA, Stracke ML. Cloning, chromosomal localization, and tissue expression of autotaxin from human teratocarcinoma cells. Biochem. Biophys. Res. Comm. 1996;218:714–719. doi: 10.1006/bbrc.1996.0127. [DOI] [PubMed] [Google Scholar]
- [68].Mukai M, Togawa A, Imamura F, Iwasaki T, Ayaki M, Mammoto T, Nakamura H, Tatsuta M, Inoue M. Sustained tyrosine-phosphorylation of FAK through Rho-dependent adhesion to fibronectin is essential for cancer cell migration. Anticancer Res. 2002;22:3175–3184. [PubMed] [Google Scholar]
- [69].Narita M, Goji J, Nakamura H, Sano K. Molecular cloning, expression, and localization of a brain-specific phosphodiesterase I/nucleotide pyrophosphatase (PD-I alpha) from rat brain. J. Biol. Chem. 1994;269:28235–28242. [PubMed] [Google Scholar]
- [70].van Meeteren LA, Ruurs P, Stortelers C, Bouwman P, van Rooijen MA, Pradere JP, Pettit TR, Wakelam MJ, Saulnier-Blache JS, Mummery CL, Moolenaar WH, Jonkers J. Autotaxin, a secreted lysophospholipase D, is essential for blood vessel formation during development. Mol. Cell. Biol. 2006;26:5015–5022. doi: 10.1128/MCB.02419-05. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [71].Nam SW, Clair T, Campo CK, Lee HY, Liotta LA, Stracke ML. Autotaxin (ATX), a potent tumor motogen, augments invasive and metastatic potential of ras-transformed cells. Oncogene. 2000;19:241–247. doi: 10.1038/sj.onc.1203263. [DOI] [PubMed] [Google Scholar]
- [72].Zhang G, Contos JJ, Weiner JA, Fukushima N, Chun J. Comparative analysis of three murine G-protein coupled receptors activated by sphingosine-1-phosphate. Gene. 1999;227:89–99. doi: 10.1016/s0378-1119(98)00589-7. [DOI] [PubMed] [Google Scholar]
- [73].Ishii I, Friedman B, Ye X, Kawamura S, McGiffert C, Contos JJ, Kingsbury MA, Zhang G, Brown JH, Chun J. Selective loss of sphingosine 1-phosphate signaling with no obvious phenotypic abnormality in mice lacking its G protein-coupled receptor, LP(B3)/EDG-3. J. Biol. Chem. 2001;276:33697–33704. doi: 10.1074/jbc.M104441200. [DOI] [PubMed] [Google Scholar]
- [74].Liu CH, Hla T. The mouse gene for the inducible G-protein-coupled receptor edg-1. Genomics. 1997;43:15–24. doi: 10.1006/geno.1997.4759. [DOI] [PubMed] [Google Scholar]
- [75].Liu Y, Wada R, Yamashita T, Mi Y, Deng CX, Hobson JP, Rosenfeldt HM, Nava VE, Chae SS, Lee MJ, Liu CH, Hla T, Spiegel S, Proia RL. Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J. Clin. Invest. 2000;106:951–961. doi: 10.1172/JCI10905. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [76].Allende ML, Yamashita T, Proia RL. G-protein-coupled receptor S1P1 acts within endothelial cells to regulate vascular maturation. Blood. 2003;102:3665–3667. doi: 10.1182/blood-2003-02-0460. [DOI] [PubMed] [Google Scholar]
- [77].Hobson JP, Rosenfeldt HM, Barak LS, Olivera A, Poulton S, Caron MG, Milstien S, Spiegel S. Role of the sphingosine-1-phosphate receptor EDG-1 in PDGF-induced cell motility. Science. 2001;291:1800–1803. doi: 10.1126/science.1057559. [DOI] [PubMed] [Google Scholar]
- [78].Hellstrom M, Kalen M, Lindahl P, Abramsson A, Betsholtz C. Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development. 1999;126:3047–3055. doi: 10.1242/dev.126.14.3047. [DOI] [PubMed] [Google Scholar]
- [79].Lindahl P, Johansson BR, Leveen P, Betsholtz C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science. 1997;277:242–245. doi: 10.1126/science.277.5323.242. [DOI] [PubMed] [Google Scholar]
- [80].Kluk MJ, Colmont C, Wu MT, Hla T. Platelet-derived growth factor (PDGF)-induced chemotaxis does not require the G protein-coupled receptor S1P1 in murine embryonic fibroblasts and vascular smooth muscle cells. FEBS Lett. 2003;533:25–28. doi: 10.1016/s0014-5793(02)03742-0. [DOI] [PubMed] [Google Scholar]
- [81].Kimura A, Ohmori T, Ohkawa R, Madoiwa S, Mimuro J, Murakami T, Kobayashi E, Hoshino Y, Yatomi Y, Sakata Y. Essential roles of sphingosine 1-phosphate/S1P1 receptor axis in the migration of neural stem cells toward a site of spinal cord injury. Stem Cells. 2007;25:115–124. doi: 10.1634/stemcells.2006-0223. [DOI] [PubMed] [Google Scholar]
- [82].Allende ML, Dreier JL, Mandala S, Proia RL. Expression of the sphingosine 1-phosphate receptor, S1P1, on T-cells controls thymic emigration. J. Biol. Chem. 2004;279:15396–15401. doi: 10.1074/jbc.M314291200. [DOI] [PubMed] [Google Scholar]
- [83].Kabashima K, Haynes NM, Xu Y, Nutt SL, Allende ML, Proia RL, Cyster JG. Plasma cell S1P1 expression determines secondary lymphoid organ retention versus bone marrow tropism. J. Exp. Med. 2006;203:2683–2690. doi: 10.1084/jem.20061289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [84].Matloubian M, Lo CG, Cinamon G, Lesneski MJ, Xu Y, Brinkmann V, Allende ML, Proia RL, Cyster JG. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature. 2004;427:355–360. doi: 10.1038/nature02284. [DOI] [PubMed] [Google Scholar]
- [85].MacLennan AJ, Browe CS, Gaskin AA, Lado DC, Shaw G. Cloning and characterization of a putative G-protein coupled receptor potentially involved in development. Mol. Cell. Neurosci. 1994;5:201–209. doi: 10.1006/mcne.1994.1024. [DOI] [PubMed] [Google Scholar]
- [86].MacLennan AJ, Marks L, Gaskin AA, Lee N. Embryonic expression pattern of H218, a G-protein coupled receptor homolog, suggests roles in early mammalian nervous system development. Neurosci. 1997;79:217–224. doi: 10.1016/s0306-4522(96)00601-x. [DOI] [PubMed] [Google Scholar]
- [87].MacLennan AJ, Carney PR, Zhu WJ, Chaves AH, Garcia J, Grimes JR, Anderson KJ, Roper SN, Lee N. An essential role for the H218/AGR16/Edg-5/LP(B2) sphingosine 1-phosphate receptor in neuronal excitability. Eur. J. Neurosci. 2001;14:203–209. doi: 10.1046/j.0953-816x.2001.01634.x. [DOI] [PubMed] [Google Scholar]
- [88].McGiffert C, Contos JJ, Friedman B, Chun J. Embryonic brain expression analysis of lysophospholipid receptor genes suggests roles for s1p(1) in neurogenesis and s1p(1-3) in angiogenesis. FEBS Lett. 2002;531:103–108. doi: 10.1016/s0014-5793(02)03404-x. [DOI] [PubMed] [Google Scholar]
- [89].Lorenz JN, Arend LJ, Robitz R, Paul RJ, MacLennan AJ. Vascular dysfunction in S1P2 sphingosine 1-phosphate receptor knockout mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007;292:R440–446. doi: 10.1152/ajpregu.00085.2006. [DOI] [PubMed] [Google Scholar]
- [90].Skoura A, Sanchez T, Claffey K, Mandala SM, Proia RL, Hla T. Essential role of sphingosine 1-phosphate receptor 2 in pathological angiogenesis of the mouse retina. J. Clin. Invest. 2007;117:2506–2516. doi: 10.1172/JCI31123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [91].Serriere-Lanneau V, Teixeira-Clerc F, Li L, Schippers M, de Wries W, Julien B, Tran-Van-Nhieu J, Manin S, Poelstra K, Chun J, Carpentier S, Levade T, Mallat A, Lotersztajn S. The sphingosine 1-phosphate receptor S1P2 triggers hepatic wound healing. FASEB J. 2007;21:2005–2013. doi: 10.1096/fj.06-6889com. [DOI] [PubMed] [Google Scholar]
- [92].Kupperman E, An S, Osborne N, Waldron S, Stainier DY. A sphingosine-1-phosphate receptor regulates cell migration during vertebrate heart development. Nature. 2000;406:192–195. doi: 10.1038/35018092. [DOI] [PubMed] [Google Scholar]
- [93].Ishii I, Ye X, Friedman B, Kawamura S, Contos JJ, Kingsbury MA, Yang AH, Zhang G, Brown JH, Chun J. Marked perinatal lethality and cellular signaling deficits in mice null for the two sphingosine 1-phosphate (S1P) receptors, S1P(2)/LP(B2)/EDG-5 and S1P(3)/LP(B3)/EDG-3. J. Biol. Chem. 2002;277:25152–25159. doi: 10.1074/jbc.M200137200. [DOI] [PubMed] [Google Scholar]
- [94].Kono M, Mi Y, Liu Y, Sasaki T, Allende ML, Wu YP, Yamashita T, Proia RL. The sphingosine-1-phosphate receptors S1P1, S1P2, and S1P3 function coordinately during embryonic angiogenesis. J. Biol. Chem. 2004;279:29367–29373. doi: 10.1074/jbc.M403937200. [DOI] [PubMed] [Google Scholar]
- [95].Rosenfeldt HM, Hobson JP, Maceyka M, Olivera A, Nava VE, Milstien S, Spiegel S. EDG-1 links the PDGF receptor to Src and focal adhesion kinase activation leading to lamellipodia formation and cell migration. Faseb J. 2001;15:2649–2659. doi: 10.1096/fj.01-0523com. [DOI] [PubMed] [Google Scholar]
- [96].Goparaju SK, Jolly PS, Watterson KR, Bektas M, Alvarez S, Sarkar S, Mel L, Ishii I, Chun J, Milstien S, Spiegel S. The S1P2 receptor negatively regulates platelet-derived growth factor-induced motility and proliferation. Mol. Cell. Biol. 2005;25:4237–4249. doi: 10.1128/MCB.25.10.4237-4249.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [97].Yamaguchi F, Tokuda M, Hatase O, Brenner S. Molecular cloning of the novel human G protein-coupled receptor (GPCR) gene mapped on chromosome 9. Biochem. Biophys. Res. Comm. 1996;227:608–614. doi: 10.1006/bbrc.1996.1553. [DOI] [PubMed] [Google Scholar]
- [98].Baudhuin LM, Jiang Y, Zaslavsky A, Ishii I, Chun J, Xu Y. S1P3-mediated Akt activation and cross-talk with platelet-derived growth factor receptor (PDGFR) Faseb J. 2004;18:341–343. doi: 10.1096/fj.03-0302fje. [DOI] [PubMed] [Google Scholar]
- [99].Gon Y, Wood MR, Kiosses WB, Jo E, Sanna MG, Chun J, Rosen H. S1P3 receptor-induced reorganization of epithelial tight junctions compromises lung barrier integrity and is potentiated by TNF. Proc. Natl. Acad. Sci. U S A. 2005;102:9270–9275. doi: 10.1073/pnas.0501997102. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
- [100].Means CK, Xiao CY, Li Z, Zhang T, Omens JH, Ishii I, Chun J, Brown JH. Sphingosine 1-phosphate S1P2 and S1P3 receptor-mediated Akt activation protects against in vivo myocardial ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 2007;292:H2944–2951. doi: 10.1152/ajpheart.01331.2006. [DOI] [PubMed] [Google Scholar]
- [101].Niessen F, Schaffner F, Furlan-Freguia C, Pawlinski R, Bhattacharjee G, Chun J, Derian CK, Andrde-Gordon P, Rosen H, Ruf W. Dendritic cell PAR1-S1P3 signalling couples coagulation and inflammation. Nature. 2008 doi: 10.1038/nature06663. in press. [DOI] [PubMed] [Google Scholar]
- [102].Glickman M, Malek RL, Kwitek-Black AE, Jacob HJ, Lee NH. Molecular cloning, tissue-specific expression, and chromosomal localization of a novel nerve growth factor-regulated G-protein-coupled receptor, nrg-1. Mol Cell Neurosci. 1999;14:141–152. doi: 10.1006/mcne.1999.0776. [DOI] [PubMed] [Google Scholar]
- [103].Im DS, Heise CE, Ancellin N, O’Dowd BF, Shei GJ, Heavens RP, Rigby MR, Hla T, Mandala S, McAllister G, George SR, Lynch KR. Characterization of a novel sphingosine 1-phosphate receptor, Edg-8. J. Biol. Chem. 2000;275:14281–14286. doi: 10.1074/jbc.275.19.14281. [DOI] [PubMed] [Google Scholar]
- [104].Jaillard C, Harrison S, Stankoff B, Aigrot MS, Calver AR, Duddy G, Walsh FS, Pangalos MN, Arimura N, Kaibuchi K, Zalc B, Lubetzki C. Edg8/S1P5: an oligodendroglial receptor with dual function on process retraction and cell survival. J. Neurosc.i. 2005;25:1459–1469. doi: 10.1523/JNEUROSCI.4645-04.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [105].Walzer T, Chiossone L, Chaix J, Calver A, Carozzo C, Garrigue-Antar L, Jacques Y, Baratin M, Tomasello E, Vivier E. Natural killer cell trafficking in vivo requires a dedicated sphingosine 1-phosphate receptor. Nat. Immunol. 2007;8:1337–1344. doi: 10.1038/ni1523. [DOI] [PubMed] [Google Scholar]
- [106].Novgorodov AS, El-Alwani M, Bielawski J, Obeid LM, Gudz TI. Activation of sphingosine-1-phosphate receptor S1P5 inhibits oligodendrocyte progenitor migration. FASEB J. 2007;21:1503–1514. doi: 10.1096/fj.06-7420com. [DOI] [PubMed] [Google Scholar]
- [107].Herr DR, Fyrst H, Creason MB, Phan VH, Saba JD, Harris GL. Characterization of the Drosophila sphingosine kinases and requirement for Sk2 in normal reproductive function. J. Biol. Chem. 2004;279:12685–12694. doi: 10.1074/jbc.M310647200. [DOI] [PubMed] [Google Scholar]
- [108].Coursol S, Le Stunff H, Lynch DV, Gilroy S, Assmann SM, Spiegel S. Arabidopsis sphingosine kinase and the effects of phytosphingosine-1-phosphate on stomatal aperture. Plant Physiol. 2005;137:724–737. doi: 10.1104/pp.104.055806. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [109].Nagiec MM, Skrzypek M, Nagiec EE, Lester RL, Dickson RC. The LCB4 (YOR171c) and LCB5 (YLR260w) genes of Saccharomyces encode sphingoid long chain base kinases. J. Biol. Chem. 1998;273:19437–19442. doi: 10.1074/jbc.273.31.19437. [DOI] [PubMed] [Google Scholar]
- [110].Oskouian B, Saba JD. Death and taxis: what non-mammalian models tell us about sphingosine-1-phosphate. Semin. Cell Dev. Biol. 2004;15:529–540. doi: 10.1016/j.semcdb.2004.05.009. [DOI] [PubMed] [Google Scholar]
- [111].Billich A, Bornancin F, Devay P, Mechtcheriakova D, Urtz N, Baumruker T. Phosphorylation of the immunomodulatory drug FTY720 by sphingosine kinases. J. Biol. Chem. 2003;278:47408–47415. doi: 10.1074/jbc.M307687200. [DOI] [PubMed] [Google Scholar]
- [112].Allende ML, Sasaki T, Kawai H, Olivera A, Mi Y, van Echten-Deckert G, Hajdu R, Rosenbach M, Keohane CA, Mandala S, Spiegel S, Proia RL. Mice deficient in sphingosine kinase 1 are rendered lymphopenic by FTY720. J. Biol. Chem. 2004;279:52487–52492. doi: 10.1074/jbc.M406512200. [DOI] [PubMed] [Google Scholar]
- [113].Mizugishi K, Yamashita T, Olivera A, Miller GF, Spiegel S, Proia RL. Essential role for sphingosine kinases in neural and vascular development. Mol. Cell. Biol. 2005;25:11113–11121. doi: 10.1128/MCB.25.24.11113-11121.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [114].Mizugishi K, Li C, Olivera A, Bielawski J, Bielawska A, Deng CX, Proia RL. Maternal disturbance in activated sphingolipid metabolism causes pregnancy loss in mice. J. Clin. Invest. 2007;117:2993–3006. doi: 10.1172/JCI30674. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [115].Phan VH, Herr DR, Panton D, Fyrst H, Saba JD, Harris GL. Disruption of sphingolipid metabolism elicits apoptosis-associated reproductive defects in Drosophila. Dev. Biol. 2007;309:329–341. doi: 10.1016/j.ydbio.2007.07.021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [116].Pappu R, Schwab SR, Cornelissen I, Pereira JP, Regard JB, Xu Y, Camerer E, Zheng YW, Huang Y, Cyster JG, Coughlin SR. Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science. 2007;316:295–298. doi: 10.1126/science.1139221. [DOI] [PubMed] [Google Scholar]
- [117].Chun J. Immunology. The sources of a lipid conundrum. Science. 2007;316:208–210. doi: 10.1126/science.1142239. [DOI] [PubMed] [Google Scholar]
- [118].Brinkmann V, Lynch KR. FTY720: targeting G-protein-coupled receptors for sphingosine 1-phosphate in transplantation and autoimmunity. Curr. Opin. Immunol. 2002;14:569–575. doi: 10.1016/s0952-7915(02)00374-6. [DOI] [PubMed] [Google Scholar]
- [119].Brinkmann V, Davis MD, Heise CE, Albert R, Cottens S, Hof R, Bruns C, Prieschl E, Baumruker T, Hiestand P, Foster CA, Zollinger M, Lynch KR. The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J. Biol. Chem. 2002;277:21453–21457. doi: 10.1074/jbc.C200176200. [DOI] [PubMed] [Google Scholar]
- [120].Zemann B, Kinzel B, Muller M, Reuschel R, Mechtcheriakova D, Urtz N, Bornancin F, Baumruker T, Billich A. Sphingosine kinase type 2 is essential for lymphopenia induced by the immunomodulatory drug FTY720. Blood. 2006;107:1454–1458. doi: 10.1182/blood-2005-07-2628. [DOI] [PubMed] [Google Scholar]
- [121].Kharel Y, Lee S, Snyder AH, Sheasley-O’neill S L, Morris MA, Setiady Y, Zhu R, Zigler MA, Burcin TL, Ley K, Tung KS, Engelhard VH, Macdonald TL, Pearson-White S, Lynch KR. Sphingosine kinase 2 is required for modulation of lymphocyte traffic by FTY720. J. Biol. Chem. 2005;280:36865–36872. doi: 10.1074/jbc.M506293200. [DOI] [PubMed] [Google Scholar]
- [122].Olivera A, Mizugishi K, Tikhonova A, Ciaccia L, Odom S, Proia RL, Rivera J. The sphingosine kinase-sphingosine-1-phosphate axis is a determinant of mast cell function and anaphylaxis. Immunity. 2007;26:287–297. doi: 10.1016/j.immuni.2007.02.008. [DOI] [PubMed] [Google Scholar]