Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1993 Oct;31(10):2641–2647. doi: 10.1128/jcm.31.10.2641-2647.1993

Detection of dengue-2 viral RNA by reversible target capture hybridization.

L J Chandler 1, C D Blair 1, B J Beaty 1
PMCID: PMC265958  PMID: 7902844

Abstract

A reversible target capture (RTC) sandwich hybridization technique has been developed for the detection of dengue-2 viral RNA. The RTC is a form of sandwich hybridization that utilizes two probes: a poly(dA)-tailed capture probe and a labeled detector probe. Following hybridization of both probes to the analyte in solution, the poly(dA)-tailed capture probe is used to selectively remove the hybrids by capture on oligo(dT)-coated paramagnetic beads. AFter elution from the beads, the presence of specific hybrids is revealed by detection of the labeled probe. After optimization of all parameters by using 32P-labeled probes, digoxigenin was used as a label to preclude the use of radioisotopes. The sensitivity of the developed RTC procedure was determined. The lowest amount of virus detectable in cell culture lysates by using 32P-labeled probes was 20 PFU, while with digoxigenin-labeled probes, 200 PFU was detectable. The RTC procedure also detected dengue-2 virus in infected mosquitoes, both individually and in pools. The RTC has the advantage of being performed directly on crude samples, eliminating the need for phenol extraction and purification of target nucleic acids. These results indicate that the RTC procedure is sensitive, rapid, and easy to perform and that its use in surveillance programs will allow detection of dengue virus in pools of mosquitoes more rapidly than current procedures.

Full text

PDF
2641

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bundo K., Igarashi A. Antibody-capture ELISA for detection of immunoglobulin M antibodies in sera from Japanese encephalitis and dengue hemorrhagic fever patients. J Virol Methods. 1985 May;11(1):15–22. doi: 10.1016/0166-0934(85)90120-x. [DOI] [PubMed] [Google Scholar]
  2. Deubel V., Laille M., Hugnot J. P., Chungue E., Guesdon J. L., Drouet M. T., Bassot S., Chevrier D. Identification of dengue sequences by genomic amplification: rapid diagnosis of dengue virus serotypes in peripheral blood. J Virol Methods. 1990 Oct;30(1):41–54. doi: 10.1016/0166-0934(90)90042-e. [DOI] [PubMed] [Google Scholar]
  3. Eldadah Z. A., Asher D. M., Godec M. S., Pomeroy K. L., Goldfarb L. G., Feinstone S. M., Levitan H., Gibbs C. J., Jr, Gajdusek D. C. Detection of flaviviruses by reverse-transcriptase polymerase chain reaction. J Med Virol. 1991 Apr;33(4):260–267. doi: 10.1002/jmv.1890330410. [DOI] [PubMed] [Google Scholar]
  4. Henchal E. A., Narupiti S., Feighny R., Padmanabhan R., Vakharia V. Detection of dengue virus RNA using nucleic acid hybridization. J Virol Methods. 1987 Feb;15(3):187–200. doi: 10.1016/0166-0934(87)90097-8. [DOI] [PubMed] [Google Scholar]
  5. Irie K., Mohan P. M., Sasaguri Y., Putnak R., Padmanabhan R. Sequence analysis of cloned dengue virus type 2 genome (New Guinea-C strain). Gene. 1989 Feb 20;75(2):197–211. doi: 10.1016/0378-1119(89)90266-7. [DOI] [PubMed] [Google Scholar]
  6. Knudsen A. B. The significance of the introduction of Aedes albopictus into the southeastern United States with implications for the Caribbean, and perspectives of the Pan American Health Organization. J Am Mosq Control Assoc. 1986 Dec;2(4):420–423. [PubMed] [Google Scholar]
  7. Laille M., Deubel V., Sainte-Marie F. F. Demonstration of concurrent dengue 1 and dengue 3 infection in six patients by the polymerase chain reaction. J Med Virol. 1991 May;34(1):51–54. doi: 10.1002/jmv.1890340109. [DOI] [PubMed] [Google Scholar]
  8. Lanciotti R. S., Calisher C. H., Gubler D. J., Chang G. J., Vorndam A. V. Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction. J Clin Microbiol. 1992 Mar;30(3):545–551. doi: 10.1128/jcm.30.3.545-551.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Melton D. A., Krieg P. A., Rebagliati M. R., Maniatis T., Zinn K., Green M. R. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 1984 Sep 25;12(18):7035–7056. doi: 10.1093/nar/12.18.7035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Morrissey D. V., Collins M. L. Nucleic acid hybridization assays employing dA-tailed capture probes. Single capture methods. Mol Cell Probes. 1989 Jun;3(2):189–207. doi: 10.1016/0890-8508(89)90029-7. [DOI] [PubMed] [Google Scholar]
  11. Morrissey D. V., Lombardo M., Eldredge J. K., Kearney K. R., Groody E. P., Collins M. L. Nucleic acid hybridization assays employing dA-tailed capture probes. I. Multiple capture methods. Anal Biochem. 1989 Sep;181(2):345–359. doi: 10.1016/0003-2697(89)90255-8. [DOI] [PubMed] [Google Scholar]
  12. Olson K. E., Blair C. D., Beaty B. J. Detection of dengue viral RNA in mosquito vectors by mixed phase and solution hybridization. Mol Cell Probes. 1990 Aug;4(4):307–320. doi: 10.1016/0890-8508(90)90022-r. [DOI] [PubMed] [Google Scholar]
  13. Olson K., Blair C., Padmanabhan R., Beaty B. Detection of dengue virus type 2 in Aedes albopictus by nucleic acid hybridization with strand-specific RNA probes. J Clin Microbiol. 1988 Mar;26(3):579–581. doi: 10.1128/jcm.26.3.579-581.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Schoepp R. J., Bray J. F., Olson K. E., el-Hussein A., Holbrook F. R., Blair C. D., Roy P., Beaty B. J. Detection of bluetongue virus serotype 17 in Culicoides variipennis by nucleic acid blot and sandwich hybridization techniques. J Clin Microbiol. 1990 Sep;28(9):1952–1956. doi: 10.1128/jcm.28.9.1952-1956.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Tardieux I., Poupel O. Use of DNA amplification for rapid detection of dengue viruses in midgut cells of individual mosquitoes. Res Virol. 1990 Jul-Aug;141(4):455–457. doi: 10.1016/0923-2516(90)90046-l. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES