Skip to main content
Cellular and Molecular Neurobiology logoLink to Cellular and Molecular Neurobiology
. 2004 Aug;24(4):553–563. doi: 10.1023/B:CEMN.0000023629.81595.09

Brevenal Is a Natural Inhibitor of Brevetoxin Action in Sodium Channel Receptor Binding Assays

Andrea J Bourdelais 1, Susan Campbell 1, Henry Jacocks 1, Jerome Naar 1, Jeffery L C Wright 1,2, Jigani Carsi 3, Daniel G Baden 1,2
PMCID: PMC2659878  NIHMSID: NIHMS68731  PMID: 15233378

Abstract

1. Florida red tides produce profound neurotoxicity that is evidenced by massive fish kills, neurotoxic shellfish poisoning, and respiratory distress. Red tides vary in potency, potency that is not totally governed by toxin concentration. The purpose of the study was to understand the variable potency of red tides by evaluating the potential for other natural pharmacological agents which could modulate or otherwise reduce the potency of these lethal environmental events.

2. A synaptosome binding preparation with 3-fold higher specific brevetoxin binding was developed to detect small changes in toxin binding in the presence of potential antagonists. Rodent brain labeled in vitro with tritiated brevetoxin shows high specific binding in the cerebellum as evidenced by autoradiography. Synaptosome binding assays employing cerebellum-derived synaptosomes illustrate 3-fold increased specific binding.

3. A new polyether natural product from Florida's red tide dinoflagellate Karenia brevis, has been isolated and characterized. Brevenal, as the nontoxic natural product is known, competes with tritiated brevetoxin for site 5 associated with the voltage-sensitive sodium channel (VSSC). Brevenal displacement of specific brevetoxin binding is purely competitive in nature.

4. Brevenal, obtained from either laboratory cultures or field collections during a red tide, protects fish from the neurotoxic effects of brevetoxin exposure.

5. Brevenal may serve as a model compound for the development of therapeutics to prevent or reverse intoxication in red tide exposures.

Keywords: brevetoxin, brevenal, receptor binding, molecular therapeutics

REFERENCE

  1. Abraham, W. M. (1995). Animal models of asthma. In Busse, W. W., and Holgate, S. T. (eds.), Asthma & Rhinitis, Blackwell Scientific, Boston, pp. 1205–1227. [Google Scholar]
  2. Abraham, W. M., Ahmed, A., Sabater, J. R., Lauredo, I. T., Botvinnikova, Y., Bjercke, R. J., Hu, X., Revelle, B. M., Kogan, T. P., Dupré, B., Scott, I. L., Dixon, R. A. F., Yeh, E. T. H., and Beck, P. J. (1999). Selectin blockade prevents antigen-induced late bronchial responses and airway hyperresponsiveness in allergic sheep. Am. J. Respir. Crit. Care Med. 159:1205–1214. [DOI] [PubMed] [Google Scholar]
  3. Abraham, W. M., Bourdelais, A. J., and Baden, D. G. (2002). Polyether brevetoxin (PbTx) aerosols cause bronchoconstriction in sheep. Am. J. Respir. Crit. Care Med. 165(8):A20. [Google Scholar]
  4. Abraham, W. M. Sielczak, M. W., Ahmed, A., Cortes, A., Lauredo, I. T., Kim, J., Pepinsky, B., Benjamin, C. D., Leone, D. R., Lobb, R. R., and Weller, P. F. (1994). α4 integrins mediate antigen-induced late bronchial responses and prolonged airway hyperresponsiveness in sheep. J. Clin. Invest. 93:776–787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baden, D. G. (1983). Marine food-borne dinoflagellate toxins. Intl. Rev. Cytol. 82:99–150. [DOI] [PubMed] [Google Scholar]
  6. Baden, D. G., and Adams, D. J. (2000). Brevetoxins: Chemistry, mechanism of action, and methods of detection. In Botana, L. M. (ed.), Seafood and Freshwater Toxins: Pharmacology, Physiology, and Detection, Marcel Dekker, New York, pp. 505–532. [Google Scholar]
  7. Baden, D. G., and Mende, T. J. (1982). Toxicity of two toxins isolated from Ptychodiscus brevis. Toxicon 20:457–461. [DOI] [PubMed] [Google Scholar]
  8. Baden, D. G., and Tomas, C. R. (1988). Variations in major toxin composition for six clones of Ptychodiscus brevis. Toxicon 26(10):961–963. [DOI] [PubMed] [Google Scholar]
  9. Bossart, G. D., Baden, D. G., Ewing, R. Y., Roberts, B., and Wright, S. D. (1998). Brevetoxicosis in manatees (Trichechus manatus latirostris) from the 1996 epizootic: gross, histologic, and immunohistochemical features. Toxicol. Pathol. 26:276–282. [DOI] [PubMed] [Google Scholar]
  10. Bourdelais, A. J., Tomas, C. R., Naar, J., Kubanek, J., and Baden, D. G. (2002). New fish-killing alga in coastal Delaware produces neurotoxins. Environ. Health Perspect. 110(5):465–470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Catterall W. A., and Risk, M. A. (1981). Toxins T46 from Ptychodiscus brevis (formerly Gymnodinium breve) enhances activation of voltage-sensitive sodium channels by veratridine. Mol. Pharmacol. 19:345–348. [PubMed] [Google Scholar]
  12. Daugbjerg, N., Hansen, G., Larsen, J., and Moestrup, O. (2000). Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates. Phycologia 39:302–317. [Google Scholar]
  13. Inoue, M., Hirama, M., Satake, M., Sugiyama, K., and Yasumoto, T. (2003). Inhibition of brevetoxin binding to the voltage-gated sodium channel by gambierol and gambieric acid-A. Toxicon 41:469–474. [DOI] [PubMed] [Google Scholar]
  14. Lin, Y. Y., Risk, M. A., Ray, S. M., VanEngen, D., Clardy, J., Golik, J., James, J. C., and Nakanishi, K. (1981). Isolation and structure of brevetoxin B from the “red tide” dinoflagellate Ptychodiscus brevis. JACS 103:6773–6775. [Google Scholar]
  15. O'Halloran. (2002). Brevetoxin and brevetoxin-producing species in Monterey Bay, California. In Xth International Conference on Harmful Algae, St. Petersburg, FL, October 21–25, p. 218, Abstract.
  16. Pierce, R. H. (1986). Red tide (Ptychodiscus brevis) toxin aerosols: A review. Toxicon 24:955–966. [DOI] [PubMed] [Google Scholar]
  17. Poli, M. A., Mende, T. J., and Baden, D. G. (1986). Brevetoxins, unique activators of voltage-sensitive sodium channels, bind to specific sites in rat brain synaptosomes. Mol. Pharmacol. 30:129–135. [PubMed] [Google Scholar]
  18. Purkerson S. L., and Potter, L. T. (1998). Use of antimuscarinic toxins to facilitate the study of striatal m4 muscarinic receptors. J. Pharmacol. 284:707–713. [PubMed] [Google Scholar]
  19. Purkerson-Parker, S. L., Fieber, L. A., Rein, K. S., and Baden, D. G. (2000). Brevetoxin derivatives that inhibit toxin activity. Chem. Biol. 7:385–393. [DOI] [PubMed] [Google Scholar]
  20. Rein, K. S., Baden, D. G., and Gawley, R. E. (1994a). Conformational analysis of the sodium channel modulator, brevetoxin A, comparison with brevetoxin B conformations, and a hypothesis about the common pharmacophore of the 'site’ 5 toxins. J. Org. Chem. 59:2101–2106. [Google Scholar]
  21. Rein, K. S., Lynn, B., Gawley, R. E., and Baden, D. G. (1994b). Brevetoxin B: Chemical modifications, synaptosome binding, toxicity, and an unexpected conformational effect. J. Org. Chem. 59:2107–2113. [Google Scholar]
  22. Roszell, L. E., Schulman, L. S., and Baden, D. G. (1988). Toxin profiles are dependent on growth stages in cultured Ptychodiscus brevis. In Graneli, E., Sundstrom, B., Elder, L., and Anderson, D. M. (eds.), Toxic Marine Phytoplankton, Elsevier, New York, pp. 403–406. [Google Scholar]
  23. Shimizu, Y. S., Gupta, S., and Prasad A. V. K. (1990) Biosynthesis of dinoflagellate toxins. In Graneli, E., Sundstrom, B., Edler, L., and Anderson, D. M. (eds.), Toxic Marine Phytoplankton, Elsevier, New York, pp. 62–76. [Google Scholar]
  24. Shimizu, Y. S., Chou, H. N., Bando, H., VanDuyne, G., and Clardy, J. (1986). Structure of brevetoxin A (GB-1), the most potent toxin in the Florida red tide organism Gymnodinium breve. JACS 108:514–515. [DOI] [PubMed] [Google Scholar]
  25. Steidinger, K. A., and Baden, D. G. (1984). Toxic marine dinoflagellates. In Spector, D. L. (ed.), Dinoflagellates, Academic Press, New York, pp. 201–299. [Google Scholar]
  26. Steidinger, K. A., and Ingle, R. M. (1972). Observations on the 1971 summer red tide in Tampa Bay, Florida. Environ. Lett. 3:271–277. [DOI] [PubMed] [Google Scholar]
  27. Stuart, A., and Baden, D. G. (1988). Florida redtide brevetoxins and binding in fish brain synaptosomes. Aquatic Toxicol. 13:271–280. [Google Scholar]
  28. Watanabe, T., Lockey, R. F., and Krzanowski, J. J. (1988). Airway smooth muscle contraction induced by Ptychodiscus brevis (red tide) toxin as related to a trigger mechanism of bronchial asthma. Immunol. Allergy Pract. 185:25–32. [Google Scholar]

Articles from Cellular and Molecular Neurobiology are provided here courtesy of Springer

RESOURCES