Skip to main content
NIHPA Author Manuscripts logoLink to NIHPA Author Manuscripts
. Author manuscript; available in PMC: 2009 Mar 28.
Published in final edited form as: Org Lett. 2008 Aug 28;10(19):4275–4278. doi: 10.1021/ol801711p

A Sequential Metal-Catalyzed C-N Bond Formation in the Synthesis of 2-Amido-Indoles

Pei-Yuan Yao , Yu Zhang , Richard P Hsung , Kang Zhao
PMCID: PMC2662137  NIHMSID: NIHMS104361  PMID: 18754591

Abstract

graphic file with name nihms-104361-f0001.jpg

A sequential metal-catalyzed C-N bond formation employing ortho-haloaryl acetylenic bromides is described. The initial amidation is highly selective for Csp-N bond formation, leading to o-haloaryl-substituted ynamides that can be useful building blocks, while the overall sequence provides a facile construction of 2-amido-indoles.


Given the importance of heterocyclic manifolds,1 we have been developing synthetic methods that feature ynamides2-3 en route to various heterocycles.4 These efforts led us to examine a possible entry for constructing amide substituted indoles.5-7 Specifically, as shown in Scheme 1, this pathway would commence with ortho-haloaryl acetylenic bromides 1 and adopt a consecutive metal-catalyzed C-N bond formation8 with the first involving the sp-hybridized carbon9-13 in an N-alkynylation manner, and the second one pertaining to an sp2-hybridized carbon in a N-arylation manner.8,14 The second C-N bond formation can also occur in a tandem manner with the ensuing indole formation promoted by the metal15,16 in a 5-endo-dig cyclization mode via 3. While copper can be employed to catalyze the Csp-N formation,9-13 we intend to utilize palladium for the Csp2-N formation.15 If this sequential C-N bond formation is selective, it would constitute a facile entry to de novo 2-amido-indoles17,18 5 from ortho-haloaryl acetylenes 1, which can be readily derived from aromatic aldehydes in two steps.19 We report here synthesis of 2-amido-indoles via a sequential metal-catalyzed C-N bond formation.

Scheme 1.

Scheme 1

A selective amidative cross-coupling of ortho-haloaryl acetylenic bromides 120 could be readily established as shown in Scheme 2. By employing 10 mol% CuSO4-5H2O and 20 mol% of 1,10-phenanthroline,13 ynamide 6-Cl was attained in 87% yield from 1-Cl. The amidation remained selective when using 1-Br and even 1-I, leading to 6-Br and 6-I in 84% and 86% yield, respectively. Under the same conditions, ynamides 7-Cl and 7-Br were obtained also via a highly selective Csp-N formation.

Scheme 2.

Scheme 2

A diverse array of ortho-haloaryl acetylenic bromides could be subjected to this selective amidation to give ynamides 8-16 [Figure 1]. Moreover, a range of cyclic and acyclic amides including sulfonamides could be employed for the N-alkynylation to afford ynamides 17-23 in good yields.

Figure 1. N-Alkynylation Products.a.

Figure 1

a. Reaction conditions are the same as those in Scheme 2. All are isolated yields.

Having established this selective amidation, we recognized that we have an excellent protocol to access o-haloaryl-substituted ynamides 6-23, which represent a new class of functionally rich building blocks that could be utilized in a number of transformations involving either the o-haloaryl or ynamido motif [Figure 2], leading to rapid assembly of structural complexity.

Figure 2. Synthetic Potential of o-Haloaryl Ynamides.

Figure 2

To illustrate such synthetic potential, we chose to pursue aminative cross-coupling of aryl halides8,14 to access 2-acetylenic anilines en route to 2-amido-indoles via metal-promoted 5-endo-dig cyclization.15-19,21 As shown in Scheme 3, when ynamide 7-Br was subjected to amination conditions employing 2.5 mol% Pd2(dba)3 and p-Tol-NH2, 2-amido-indole 24 was obtained in good yields when using either 5.0 mol% of van Leeuwen’s xantphos22 or Buchwald’s X-phos as ligands.23 Intriguingly, the use of X-phos appears to shorten the reaction time relative to xantphos while BINAP was not useful. On the other hand, amination of 7-Cl led to 24 in 78% yield only when using X-phos. It is noteworthy that amination of 6-I gave only 26% yield of corresponding indole [not shown], thereby suggesting that aryl chlorides and bromides are better suited in this operation than aryl iodides.

Scheme 3.

Scheme 3

The generality of this tandem amination-5-endo-dig cyclization is shown in Table 1, featuring a range of different amines and o-chloroaryl- or o-bromoaryl-substituted ynamides in excellent yields for their respective reactions. X-ray crystallographic analysis of 2-amido-indole 28 reveals unique orthogonality of three planes: 2-Oxazolidone, the indole ring, and the para-tolyl ring [Figure 3]. Structures with related orthogonality have been shown24 to possess inhibitory activities against human peptidyl prolyl cis/trans isomerase [PPI] Pin-1,25 which catalyzes the isomerization of prolyl peptides from cis to trans26,27 and accommodates such orthogonality at its active site. We are currently investigating such potential biological activity.

Table 1. N-Alkenylation in the 2-Amido-Indole Synthesis.

entry ynamidesa,b 2-amido-indoles yield [%]c
1 graphic file with name nihms-104361-t0008.jpg 6-Br graphic file with name nihms-104361-t0009.jpg 25: R = p-Tol 91
2 6-Br 26: R = o-Tol 82
3 graphic file with name nihms-104361-t0010.jpg 7-Cl graphic file with name nihms-104361-t0011.jpg 27d 91
4 graphic file with name nihms-104361-t0012.jpg 8 graphic file with name nihms-104361-t0013.jpg 28 65
5 graphic file with name nihms-104361-t0014.jpg 12 graphic file with name nihms-104361-t0015.jpg 29 60
6 graphic file with name nihms-104361-t0016.jpg 14 graphic file with name nihms-104361-t0017.jpg 30 72
7 graphic file with name nihms-104361-t0018.jpg 15 graphic file with name nihms-104361-t0019.jpg 31 64
8 graphic file with name nihms-104361-t0020.jpg 16 graphic file with name nihms-104361-t0021.jpg 32 80
9 graphic file with name nihms-104361-t0022.jpg 18-Br graphic file with name nihms-104361-t0023.jpg 33 71
10 graphic file with name nihms-104361-t0024.jpg 19 graphic file with name nihms-104361-t0025.jpg 34: R1 = H 82
11 20 35: R1 = CO2Me 75
12 graphic file with name nihms-104361-t0026.jpg 21 graphic file with name nihms-104361-t0027.jpg 36 88
a

Reaction conditions: 2.5 mol % Pd2(bda)3, 5.0 mol % X-phos, 3.3 equiv Cs2CO3, 1.3 equiv R-NH2, 110 °C, 8-24 h.

b

Toluene was used as solvent in entries 4, 5, 7, and 9, and dioxane was used in entries 1-3, 6, 8, and 10-12.

c

Isolated yields.

d

PMP = para-methoxy-phenyl.

Figure 3. X-Ray Structure of 2-Amido-Indole 28.

Figure 3

We have described here a sequential metal-catalyzed C-N bond formation employing ortho-haloaryl acetylenic bromides. The initial amidation is highly selective for Csp-N bond, leading to o-haloaryl-substituted ynamides that can be useful building blocks. The overall sequence provides a facile construction of 2-amido-indoles possessing a unique structural manifold.

Supplementary Material

Suppl Information

Acknowledgement

We thank UW-Madison and Cancer Center for funding. PYY and KZ thank the Cheung Kong Scholar Program for funding. We thank Dr. Haibing Song [Nankai University] for solving single-crystal X-ray structure. We also thank Dr. Yunfei Du [Tianjin University] for valuable suggestions.

References

  • 1.For a review, see:Fan W-Q, Katritzky AR. In: Comprehensive Heterocyclic Chemistry. Katritzky AR, Rees CW, Scriven EFV, editors. Vol. 4. Pergamon Press; Oxford: 1996. pp. 101–126.
  • 2.For reviews on ynamides, see:Zificsak CA, Mulder JA, Hsung RP, Rameshkumar C, Wei L-L. Tetrahedron. 2001;57:7575.Mulder JA, Kurtz KCM, Hsung RP. Synlett. 2003:1379.Katritzky AR, Jiang R, Singh SK. Heterocycles. 2004;63:1455.
  • 3.For recent references on chemistry of ynamides, see:Zhang X, Hsung RP, Li H, Zhang Y, Johnson WL, Figueroa R. Org. Lett. 2008;10:3477. doi: 10.1021/ol801257j.Al-Rashid ZF, Hsung RP. Org. Lett. 2008;10:661. doi: 10.1021/ol703083k.Istrate FM, Buzas AK, Jurberg ID, Odabachian Y, Gagosz F. Org. Lett. 2008;10:925. doi: 10.1021/ol703077g.Kim JY, Kim SH, Chang S. Tetrahedron Lett. 2008;49:1745.Martínez-Esperón MF, Rodríguez D, Castedo L, Saá C. Tetrahedron. 2008;64:3674.Yavari I, Sabbaghan M, Hosseini N, Hossaini Z. Synlett. 2007;20:3172.Oppenheimer J, Hsung RP, Figueroa R, Johnson WL. Org. Lett. 2007;9:3969. doi: 10.1021/ol701692m.You L, Al-Rashid ZF, Figueroa R, Ghosh SK, Li G, Lu T, Hsung RP. Synlett. 2007:1656.Hashimi ASK, Salathe R, Frey W. Synlett. 2007:1763.Rodríguez D, Martínez-Esperón MF, Castedo L, Saá C. Synlett. 2007:1963.Couty S, Meyer C, Cossy J. Synlett. 2007:2819.Tanaka K, Takeishi K. Synthesis. 2007:2920.Tanaka K, Takeishi K, Noguchi K. J. Am. Chem. Soc. 2006;128:4586. doi: 10.1021/ja060348f.Couty S, Meyer C, Cossy J. Angew. Chem. Int. Ed. 2006;45:6726. doi: 10.1002/anie.200602270.
  • 4.(a) Li H, You L, Zhang X, Johnson WL, Figueroa R, Hsung RP. Heterocycles. 2007;74:553. [Google Scholar]; (b) Zhang X, Hsung RP, Li H. Chem. Commun. 2007:2420. doi: 10.1039/b701040k. [DOI] [PubMed] [Google Scholar]; (c) Oppenheimer J, Johnson WL, Tracey MR, Hsung RP, Yao P-Y, Liu R, Zhao K. Org. Lett. 2007;9:2361. doi: 10.1021/ol0707362. [DOI] [PubMed] [Google Scholar]; (d) Zhang X, Li H, You L, Tang Y, Hsung RP. Adv. Syn. Cat. 2006;348:2437. [Google Scholar]; (e) Zhang X, Hsung RP, You L. Org. Biomol. Chem. 2006;6:2679. doi: 10.1039/b606680a. [DOI] [PubMed] [Google Scholar]
  • 5.For reviews on indole chemistry, see:Sundberg RL. Indoles. Academic; London: 1996. Katritzky AR, Pozharskii AF. Handbook of Heterocyclic Chemistry. Pergamon; Oxford: 2000. Chapter 4.Li JJ, Gribble GW. Palladium in Heterocyclic Chemistry. Pergamon; Oxford: 2000. Chapter 3.Gribble GW. J. Chem. Soc., Perkin Trans. 1. 2000:1045.
  • 6.For recent reviews on indole-containing natural products, see:Crich D, Banerjee A. Acc. Chem. Res. 2007;40:151. doi: 10.1021/ar050175j.Somei M, Yamada F. Nat. Prod. Rep. 2005;22:73. doi: 10.1039/b316241a.
  • 7.For a leading reference on biological activities of indoles, see:Van Zandt MC, Jones ML, Gunn DE, Geraci LS, Jones JH, Sawicki DR, Sredy J, Jacot JL, DiCioccio AT, Petrova T, Mitschler A, Podjarny AD. J. Med. Chem. 2005;48:3141. doi: 10.1021/jm0492094.
  • 8.For reviews, see:Dehli JR, Legros J, Bolm C. Chem. Commun. 2005:973. doi: 10.1039/b415954c.Ley SV, Thomas AW. Angew. Chem. Int. Ed. 2003;42:5400. doi: 10.1002/anie.200300594.Hartwig JF. Angew. Chem. Int. Ed. 1998;37:2046. doi: 10.1002/(SICI)1521-3773(19980817)37:15<2046::AID-ANIE2046>3.0.CO;2-L.Wolfe JP, Wagaw S, Marcoux J-F, Buchwald SL. Acc. Chem. Res. 1998;31:805.
  • 9.For a recent elegant account on copper-catalyzed Csp-N bond formation under oxidative conditions, see:Hamada T, Ye X, Stahl SS. J. Am. Chem. Soc. 2008;130:833. doi: 10.1021/ja077406x.
  • 10.Tracey MR, Hsung RP, Antoline JE, Kurtz KCM, Shen L, Slafer BW, Zhang Y. In: Science of Synthesis, Houben-Weyl Methods of Molecular Transformations. Weinreb Steve M., editor. Georg Thieme Verlag KG; 2005. Chapter 21.4. [Google Scholar]
  • 11.(a) Dunetz JR, Danheiser RL. Org. Lett. 2003;5:4011. doi: 10.1021/ol035647d. [DOI] [PMC free article] [PubMed] [Google Scholar]; (b) Kohnen AL, Dunetz JR, Danheiser RL. Organic Syn. 2007;84:88. [PMC free article] [PubMed] [Google Scholar]
  • 12.Riddell N, Villeneuve K, Tam W. Org. Lett. 2005;7:3681. doi: 10.1021/ol0512841. [DOI] [PubMed] [Google Scholar]
  • 13.(a) Frederick MO, Mulder JA, Tracey MR, Hsung RP, Huang J, Kurtz KCM, Shen L, Douglas CJ. J. Am. Chem. Soc. 2003;125:2368. doi: 10.1021/ja021304j. [DOI] [PubMed] [Google Scholar]; (b) Zhang Y, Hsung RP, Tracey MR, Kurtz KCM, Vera EL. Org. Lett. 2004;6:1151. doi: 10.1021/ol049827e. [DOI] [PubMed] [Google Scholar]; (c) Zhang X, Zhang Y, Huang J, Hsung RP, Kurtz KCM, Oppenheimer J, Petersen ME, Sagamanova IK, Tracey MR. J. Org. Chem. 2006;71:4170. doi: 10.1021/jo060230h. [DOI] [PubMed] [Google Scholar]; (d) Sagamanova IK, Kurtz KCM, Hsung RP. Organic Syn. 2007;84:359. [Google Scholar]
  • 14.For some examples, see:Chechik-Lankin H, Livshin S, Marek I. Synlett. 2005:2098.Han C, Shen R, Su S, Porco JA., Jr. Org. Lett. 2004;6:27. doi: 10.1021/ol0360041.Pan X, Cai Q, Ma D. Org. Lett. 2004;6:1809. doi: 10.1021/ol049464i.Brice JL, Meerdink JE, Stahl SS. Org. Lett. 2004;6:1845. doi: 10.1021/ol0494360.Langner M, Bolm C. Angew. Chem. Int. Ed. 2004;43:5984. doi: 10.1002/anie.200460953.Dehli JR, Bolm C. J. Org. Chem. 2004;69:8518. doi: 10.1021/jo0485583.Jiang L, Job GE, Klapars A, Buchwald SL. Org. Lett. 2003;5:3667. doi: 10.1021/ol035355c.Shen R, Lin CT, Porco JA., Jr. J. Am. Chem. Soc. 2002;124:5650. doi: 10.1021/ja026025a.
  • 15.For leading references on Pd- or Cu-catalyzed cyclizations of 2-alkynylanilines, see:Majumdar KC, Mondal S. Tetrahedron Lett. 2008;49:2418.Ohno H, Ohta Y, Oishi S, Fujii N. Angew. Chem. Int. Ed. 2007;46:2295. doi: 10.1002/anie.200604342.Tang S, Xie Y-X, Li J-H, Wang N-X. Synthesis. 2007;12:1841.Cacchi S, Fabrizi G, Goggiamani A. Adv. Synth. Catal. 2006;348:1301.Lu BZ, Zhao W, Wei H-X, Dufour M, Farina V, Senanayake CH. Org. Lett. 2006;8:3271. doi: 10.1021/ol061136q.Abbiati G, Arcadi A, Beccalli E, Bianchi G, Marinelli F, Rossi E. Tetrahedron. 2006;62:3033.Nishikawa T, Koide Y, Kanakubo A, Yoshimura H, Isobe M. Org. Biomol. Chem. 2006;4:1268. doi: 10.1039/b516282c.
  • 16.For references using other metals, see:Zhang Y, Donahue JP, Li C-J. Org. Lett. 2007;9:627. doi: 10.1021/ol062918m.Ambrogio I, Arcadi A, Cacchi S, Fabrizi G, Marinelli F. Synlett. 2007;11:1775.Terrasson V, Michaux J, Gaucher A, Wehbe J, Marque S, Prim D, Campagne J-M. Eur. J. Chem. 2007:5332.Yin Y, Ma W, Chai Z, Zhao G. J. Org. Chem. 2007;72:5731. doi: 10.1021/jo070681h.Kurisaki T, Naniwa T, Yamamoto H, Imagawa H, Nishizawa M. Tetrahedron Lett. 2007;48:1871.Trost BM, McClory A. Angew. Chem. Int. Ed. 2007;46:2074. doi: 10.1002/anie.200604183.
  • 17.For recent reviews on the synthesis of indoles, see:Zeni G, Larock RC. Chem. Rev. 2004;104:2285. doi: 10.1021/cr020085h.Alonso F, Beletskaya IP, Yus M. Chem. Rev. 2004;104:3079. doi: 10.1021/cr0201068.Cacchi S, Fabrizi G. Chem. Rev. 2005;105:2873. doi: 10.1021/cr040639b.Humphrey GR, Kuethe JT. Chem. Rev. 2006;106:2875. doi: 10.1021/cr0505270.Battistuzzi G, Cacchi S, Fabrizi G. Eur. J. Org. Chem. 2002:2671.Gilchrist TL. J. Chem. Soc., Perkin Trans. 1. 2001:2491.Ackermann L. Synlett. 2007:507.
  • 18.For leading references on the synthesis of 2-aminoindoles, see:Roy S, Gribble GW. Tetrahedron Lett. 2007;48:1003.Witulski B, Alayrac C, Tevzadze-Saeftel L. Angew. Chem. Int. Ed. 2003;42:4257. doi: 10.1002/anie.200351977.Fayol A, Fang Y-Q, Lautens M. Org. Lett. 2006;8:653. doi: 10.1021/ol061374l.
  • 19.For leading references, see:Ackermann L. Org. Lett. 2005;7:439. doi: 10.1021/ol047649j.Kaspar LT, Ackermann L. Tetrahedron. 2005;61:11311.Tang Z-Y, Hu Q-S. Adv. Synth. Catal. 2006;348:846.Sanz R, Castroviejo MP, Guilarte V, Perez A, Fananas FJ. J. Org. Chem. 2007;72:5113. doi: 10.1021/jo070643y.For references on related indole synthesis from ortho-gem-dihalovinyl anilines, see:Fang Y-Q, Lautens M. J. Org. Chem. 2008;73:538. doi: 10.1021/jo701987r.Nagamochi M, Fang Y-Q, Lautens M. Org. Lett. 2007;9:2955. doi: 10.1021/ol071370w.
  • 20.See Supporting Information.
  • 21.For earlier examples of indole synthesis via 2-alkynylanilines, see:Stevens RD, Castro CE. J. Org. Chem. 1963;28:3313.Castro CE, Gaughan EJ, Owsley DC. J. Org. Chem. 1966;31:4071.Castro CE, Havlin R, Honward VK, malte A, Moje S. J. Am. Chem. Soc. 1969;91:6464. doi: 10.1021/ja01054a063.Fujiwara J, Fukutani Y, Sano H, Maruoka K, Yamamoto H. J. Am. Chem. Soc. 1983;105:7177.Rudisill DE, Stille JK. J. Org. Chem. 1989;54:5856.
  • 22.For a leading reference on xantphos, see:Kranenburg M, van der Burgt YEM, Kamer PCJ, van Leeuwen PWNM. Organometallics. 1995;14:3081.
  • 23.For a leading reference on X-phos, see:Huang X, Anderson KW, Zim D, Jiang L, Klapars A, Buchwald SL. J. Am. Chem. Soc. 2003;125:6653. doi: 10.1021/ja035483w.
  • 24.Daum S, Erdmann F, Fischer G, F aux de Lacroix B, Hessamian-Alinejad A, Houben S, Frank W, Braun M. Angew. Chem. Int. Ed. 2006;45:7454. doi: 10.1002/anie.200601569. [DOI] [PubMed] [Google Scholar]
  • 25.For reviews, see:Bao L, Kimzey A, Sauter G, Sowadski JM, Lu K, Wang D. American Journal of Pathology. 2004;164:1727. doi: 10.1016/S0002-9440(10)63731-5.Lu KP. Cancer Cell. 2003;4:175. doi: 10.1016/s1535-6108(03)00218-6.Hamdane M, Smet C, Sambo A-V, Leroy A, Wieruszeski JM, Delobel P, Maurage C-A, Ghestem A, Wintjens R, Begard S, Sergeant N, Delacourte A, Horvath D, Landrieu I, Lippens G, Buee L. J. Mol. Neurosci. 2002;19:275. doi: 10.1385/JMN:19:3:275.
  • 26.For reviews, see:Fischer G. Angew. Chem. Int. Ed. Engl. 1994;33:1415.Fischer G. Chem. Soc. Rev. 2000;29:119.
  • 27.Fischer G, Bang H, Mech C. Biomed. Biochim. Acta. 1984;43:1101. [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Suppl Information

RESOURCES