Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1989 Mar;27(3):540–544. doi: 10.1128/jcm.27.3.540-544.1989

Effect of milk on fibronectin and collagen type I binding to Staphylococcus aureus and coagulase-negative staphylococci isolated from bovine mastitis.

J Miedzobrodzki 1, A S Naidu 1, J L Watts 1, P Ciborowski 1, K Palm 1, T Wadström 1
PMCID: PMC267354  PMID: 2775349

Abstract

Tryptic soy broth (TSB)-grown cells of Staphylococcus aureus isolated from acute and chronic bovine mastitis bound mainly 125I-fibronectin (Fn) [corrected], whereas strains of nine species of coagulase-negative staphylococci showed a predominant interaction with 125I-collagen (Cn) [corrected] type I. A particle agglutination assay (PAA) was used to examine the interaction of coagulase-negative staphylococci with 125I-Fn and 125I-Cn immobilized on latex. All 368 coagulase-negative staphylococci demonstrated high 125I-Cn and moderate to low 125I-Fn interactions in the PAA. Cn-PAA reactivity was high among strains of Staphylococcus xylosus (84.2%), Staphylococcus simulans (77.8%), Staphylococcus epidermidis (76.7%), and Staphylococcus hyicus (74.3%), whereas all six Staphylococcus capitis strains clumped Cn-PAA reagent. Incubating TSB-grown cells in 10% skim milk for 1 h decreased the 125I-Fn- and 125I-Cn-binding affinity in most of the S. aureus and coagulase-negative staphylococci, while growth in 10% skim milk for 18 h resulted in more than 90% decrease or complete loss of interaction with these proteins. Decreased 125I-Fn binding in the presence of milk was correlated with protease production but not with 125I-Cn binding.

Full text

PDF
540

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brock J. H., Turvey A., Reiter B. Virulence of two mastitis strains of Staphylococcus aureus in bovine skin: enhancement by growth in high carbohydrate-high salt medium or in raw milk. Infect Immun. 1973 Jun;7(6):865–872. doi: 10.1128/iai.7.6.865-872.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Freter R. Parameters affecting the association of vibrios with the intestinal surface in experimental cholera. Infect Immun. 1972 Aug;6(2):134–141. doi: 10.1128/iai.6.2.134-141.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Frost A. J., Wanasinghe D. D., Woolcock J. B. Some factors affecting selective adherence of microorganisms in the bovine mammary gland. Infect Immun. 1977 Jan;15(1):245–253. doi: 10.1128/iai.15.1.245-253.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fröman G., Switalski L. M., Faris A., Wadström T., Hök M. Binding of Escherichia coli to fibronectin. A mechanism of tissue adherence. J Biol Chem. 1984 Dec 10;259(23):14899–14905. [PubMed] [Google Scholar]
  5. GREENWOOD F. C., HUNTER W. M., GLOVER J. S. THE PREPARATION OF I-131-LABELLED HUMAN GROWTH HORMONE OF HIGH SPECIFIC RADIOACTIVITY. Biochem J. 1963 Oct;89:114–123. doi: 10.1042/bj0890114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hibbitt K. G., Benians M. Some effects in vivo of the teat canal and effects in vitro of cationic proteins on Staphylococci. J Gen Microbiol. 1971 Sep;68(1):123–128. doi: 10.1099/00221287-68-1-123. [DOI] [PubMed] [Google Scholar]
  7. Kuusela P. Fibronectin binds to Staphylococcus aureus. Nature. 1978 Dec 14;276(5689):718–720. doi: 10.1038/276718a0. [DOI] [PubMed] [Google Scholar]
  8. Mamo W., Fröman G., Sundås A., Wadström T. Binding of fibronectin, fibrinogen and type II collagen to streptococci isolated from bovine mastitis. Microb Pathog. 1987 Jun;2(6):417–424. doi: 10.1016/0882-4010(87)90048-9. [DOI] [PubMed] [Google Scholar]
  9. Martley F. G., Jarvis A. W., Bacon D. F., Lawrence R. C. Typing of coagulase-positive staphylococci by proteolytic activity on buffered caseinate-agar, with special reference to bacteriophage nontypable strains. Infect Immun. 1970 Oct;2(4):439–442. doi: 10.1128/iai.2.4.439-442.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mattila T., Syväjärvi J., Jensen N. E., Sandholm M. Determinants of bacterial replication rates in mastitic whey. J Dairy Res. 1986 May;53(2):197–202. doi: 10.1017/s0022029900024791. [DOI] [PubMed] [Google Scholar]
  11. Mosher D. F. Physiology of fibronectin. Annu Rev Med. 1984;35:561–575. doi: 10.1146/annurev.me.35.020184.003021. [DOI] [PubMed] [Google Scholar]
  12. Naidu A. S., Paulsson M., Wadström T. Particle agglutination assays for rapid detection of fibronectin, fibrinogen, and collagen receptors on Staphylococcus aureus. J Clin Microbiol. 1988 Aug;26(8):1549–1554. doi: 10.1128/jcm.26.8.1549-1554.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Proctor R. A., Textor J. A., Vann J. M., Mosher D. F. Role of fibronectin in human monocyte and macrophage bactericidal activity. Infect Immun. 1985 Mar;47(3):629–637. doi: 10.1128/iai.47.3.629-637.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rainard P. Experimental mastitis with Escherichia coli: kinetics of bacteriostatic and bactericidal activities. Ann Rech Vet. 1983;14(1):1–11. [PubMed] [Google Scholar]
  15. Reite B., Oram J. D. Bacterial inhibitors in milk and other biological fluids. Nature. 1967 Oct 28;216(5113):328–330. doi: 10.1038/216328a0. [DOI] [PubMed] [Google Scholar]
  16. Rydén C., Rubin K., Speziale P., Hök M., Lindberg M., Wadström T. Fibronectin receptors from Staphylococcus aureus. J Biol Chem. 1983 Mar 10;258(5):3396–3401. [PubMed] [Google Scholar]
  17. Thomas C. L., Neave F. K., Dodd F. H., Higgs T. M. The susceptibility of milked and unmilked udder quarters to intra-mammary infection. J Dairy Res. 1972 Feb;39(1):113–131. doi: 10.1017/s0022029900013911. [DOI] [PubMed] [Google Scholar]
  18. Vuento M., Vaheri A. Purification of fibronectin from human plasma by affinity chromatography under non-denaturing conditions. Biochem J. 1979 Nov 1;183(2):331–337. doi: 10.1042/bj1830331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wadström T. Molecular aspects on pathogenesis of wound and foreign body infections due to staphylococci. Zentralbl Bakteriol Mikrobiol Hyg A. 1987 Aug;266(1-2):191–211. doi: 10.1016/s0176-6724(87)80032-9. [DOI] [PubMed] [Google Scholar]
  20. Watts J. L., Nickerson S. C. A comparison of the STAPH-Ident and STAPH-Trac systems to conventional methods in the identification of staphylococci isolated from bovine udders. Vet Microbiol. 1986 Jul;12(2):179–187. doi: 10.1016/0378-1135(86)90079-9. [DOI] [PubMed] [Google Scholar]
  21. Williams R. C., Gibbons R. J. Inhibition of bacterial adherence by secretory immunoglobulin A: a mechanism of antigen disposal. Science. 1972 Aug 25;177(4050):697–699. doi: 10.1126/science.177.4050.697. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES