Abstract
A specific monoclonal antibody for Escherichia coli and Shigella sp. alkaline phosphatase was used in an immunocapture assay and allowed identification of E. coli either in culture isolates or directly in clinical specimens. The assay was easy and required only four steps: (i) alkaline phosphatase was released within 10 min by using a gentle lysis procedure, (ii) cell lysates were transferred to antibody-coated tubes for 45 min, (iii) p-nitrophenyl phosphate substrate was added, and (iv) alkaline phosphatase activity was detected in a microsample spectrophotometer at 410 nm. This immunocapture assay was highly specific: only one false-positive reaction was observed with a Klebsiella pneumoniae lysate among the 205 non-E. coli strains tested. The assay was sensitive, detecting 10(7) CFU/ml from culture isolates or 10(5) CFU/ml from urine specimens which had first been grown in phosphate-limiting medium for 2 h. At these bacterial concentrations, the percentages of detected E. coli were high: 91% for blood cultures, 95.4% for culture isolates, and 96.8% for urine specimens.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Colding H., Lind I. Counterimmunoelectrophoresis in the diagnosis of bacterial meningitis. J Clin Microbiol. 1977 Apr;5(4):405–409. doi: 10.1128/jcm.5.4.405-409.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edberg S. C., Kontnick C. M. Comparison of beta-glucuronidase-based substrate systems for identification of Escherichia coli. J Clin Microbiol. 1986 Sep;24(3):368–371. doi: 10.1128/jcm.24.3.368-371.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edberg S. C., Trepeta R. W. Rapid and economical identification and antimicrobial susceptibility test methodology for urinary tract pathogens. J Clin Microbiol. 1983 Dec;18(6):1287–1291. doi: 10.1128/jcm.18.6.1287-1291.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feng P. C., Hartman P. A. Fluorogenic assays for immediate confirmation of Escherichia coli. Appl Environ Microbiol. 1982 Jun;43(6):1320–1329. doi: 10.1128/aem.43.6.1320-1329.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GAREN A., LEVINTHAL C. A fine-structure genetic and chemical study of the enzyme alkaline phosphatase of E. coli. I. Purification and characterization of alkaline phosphatase. Biochim Biophys Acta. 1960 Mar 11;38:470–483. doi: 10.1016/0006-3002(60)91282-8. [DOI] [PubMed] [Google Scholar]
- Husson M. O., Trinel P. A., Izard D., Mielcarek C., Gavini F., Leclerc H. Antigenic specificity of Escherichia coli alkaline phosphatase studied with monoclonal antibodies: immunological characterization of E. coli and Shigella strains. Ann Inst Pasteur Microbiol. 1987 Jan-Feb;138(1):39–48. doi: 10.1016/0769-2609(87)90052-4. [DOI] [PubMed] [Google Scholar]
- KASS E. H. Asymptomatic infections of the urinary tract. Trans Assoc Am Physicians. 1956;69:56–64. [PubMed] [Google Scholar]
- Kaspar C. W., Hartman P. A., Benson A. K. Coagglutination and enzyme capture tests for detection of Escherichia coli beta-galactosidase, beta-glucuronidase, and glutamate decarboxylase. Appl Environ Microbiol. 1987 May;53(5):1073–1077. doi: 10.1128/aem.53.5.1073-1077.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kilian M., Bülow P. Rapid diagnosis of Enterobacteriaceae. I. Detection of bacterial glycosidases. Acta Pathol Microbiol Scand B. 1976 Oct;84B(5):245–251. doi: 10.1111/j.1699-0463.1976.tb01933.x. [DOI] [PubMed] [Google Scholar]
- Kumar A., Congeni B. L., Nankervis G. A. Latex agglutination test for rapid detection of bacterial antigens in body fluids. Ann Clin Lab Sci. 1980 Sep-Oct;10(5):377–382. [PubMed] [Google Scholar]
- MacAlister T. J., Costerton J. W., Thompson L., Thompson J., Ingram J. M. Distribution of alkaline phosphatase within the periplasmic space of gram-negative bacteria. J Bacteriol. 1972 Sep;111(3):827–832. doi: 10.1128/jb.111.3.827-832.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacaAlister T. J., Irvin R. T., Costerton J. W. Cell surface-localized alkaline phosphatase of Escherichia coli as visualized by reaction product deposition and ferritin-labeled antibodies. J Bacteriol. 1977 Apr;130(1):318–328. doi: 10.1128/jb.130.1.318-328.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pezzlo M. T., Tan G. L., Peterson E. M., de la Maza L. M. Screening of urine cultures by three automated systems. J Clin Microbiol. 1982 Mar;15(3):468–474. doi: 10.1128/jcm.15.3.468-474.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stamm W. E., Counts G. W., Running K. R., Fihn S., Turck M., Holmes K. K. Diagnosis of coliform infection in acutely dysuric women. N Engl J Med. 1982 Aug 19;307(8):463–468. doi: 10.1056/NEJM198208193070802. [DOI] [PubMed] [Google Scholar]
- Stevens P., Young L. S., Alam S. Correlation of E. coli K-1 bacteremia and capsular polysaccharide antigenemia in acute and chronic infection. Diagn Microbiol Infect Dis. 1983 Sep;1(3):185–192. doi: 10.1016/0732-8893(83)90017-2. [DOI] [PubMed] [Google Scholar]
- TORRIANI A. Influence of inorganic phosphate in the formation of phosphatases by Escherichia coli. Biochim Biophys Acta. 1960 Mar 11;38:460–469. doi: 10.1016/0006-3002(60)91281-6. [DOI] [PubMed] [Google Scholar]
- Trepeta R. W., Edberg S. C. Methylumbelliferyl-beta-D-glucuronide-based medium for rapid isolation and identification of Escherichia coli. J Clin Microbiol. 1984 Feb;19(2):172–174. doi: 10.1128/jcm.19.2.172-174.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright D. N., Saxon B., Matsen J. M. Use of the Bac-T-Screen to predict bacteriuria from urine specimens held at room temperature. J Clin Microbiol. 1986 Aug;24(2):214–217. doi: 10.1128/jcm.24.2.214-217.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Young L. S., Stevens P., Kaijser B. Gram-negative pathogens in septicaemic infections. Scand J Infect Dis Suppl. 1982;31:78–94. [PubMed] [Google Scholar]
