Abstract
EF (E. Falsen) group 22, a group of Campylobacter strains sorted out by routine immunotyping among unidentified or misidentified human nonoral clinical specimens, was characterized by numerical analysis of gel electrophoretic protein profiles and immunotyping. The protein electrophoretic and immunotyping analyses, DNA:DNA hybridizations, and the DNA base composition demonstrated unambiguously that all EF group 22 strains belong to Campylobacter concisus. EF group 22 strains have DNA binding values of at least 42% with the type strain of C. concisus, showing a considerable degree of genomic heterogeneity. The isolation from blood, esophagus, stomach, duodenum, and feces of humans in association with different gastrointestinal disorders considerably extends the clinical significance of this species. Our results indicate that sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunotyping are excellent tools for the identification of the fastidious C. concisus strains and relatives.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Costas M., Owen R. J. Numerical analysis of electrophoretic protein patterns of Streptobacillus moniliformis strains from human, murine and avian infections. J Med Microbiol. 1987 Jun;23(4):303–311. doi: 10.1099/00222615-23-4-303. [DOI] [PubMed] [Google Scholar]
- De Ley J., Cattoir H., Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem. 1970 Jan;12(1):133–142. doi: 10.1111/j.1432-1033.1970.tb00830.x. [DOI] [PubMed] [Google Scholar]
- De Ley J. Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J Bacteriol. 1970 Mar;101(3):738–754. doi: 10.1128/jb.101.3.738-754.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferguson D. A., Jr, Lambe D. W., Jr Differentiation of Campylobacter species by protein banding patterns in polyacrylamide slab gels. J Clin Microbiol. 1984 Sep;20(3):453–460. doi: 10.1128/jcm.20.3.453-460.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hébert G. A., Edmonds P., Brenner D. J. DNA relatedness among strains of Campylobacter jejuni and Campylobacter coli with divergent serogroup and hippurate reactions. J Clin Microbiol. 1984 Jul;20(1):138–140. doi: 10.1128/jcm.20.1.138-140.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson C. C., Finegold S. M. Uncommonly encountered, motile, anaerobic gram-negative bacilli associated with infection. Rev Infect Dis. 1987 Nov-Dec;9(6):1150–1162. doi: 10.1093/clinids/9.6.1150. [DOI] [PubMed] [Google Scholar]
- Kersters K., De Ley J. Identification and grouping of bacteria by numerical analysis of their electrophoretic protein patterns. J Gen Microbiol. 1975 Apr;87(2):333–342. doi: 10.1099/00221287-87-2-333. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol. 1962 Jul;5:109–118. doi: 10.1016/s0022-2836(62)80066-7. [DOI] [PubMed] [Google Scholar]
- Megraud F., Bonnet F., Garnier M., Lamouliatte H. Characterization of "Campylobacter pyloridis" by culture, enzymatic profile, and protein content. J Clin Microbiol. 1985 Dec;22(6):1007–1010. doi: 10.1128/jcm.22.6.1007-1010.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore W. E., Hash D. E., Holdeman L. V., Cato E. P. Polyacrylamide slab gel electrophoresis of soluble proteins for studies of bacterial floras. Appl Environ Microbiol. 1980 Apr;39(4):900–907. doi: 10.1128/aem.39.4.900-907.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore W. E., Holdeman L. V., Cato E. P., Smibert R. M., Burmeister J. A., Palcanis K. G., Ranney R. R. Comparative bacteriology of juvenile periodontitis. Infect Immun. 1985 May;48(2):507–519. doi: 10.1128/iai.48.2.507-519.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morris J. A., Park R. W. A comparison using gel electrophoresis of cell proteins of campylobacters (vibrios) associated with infertility, abortion and swine dysentery. J Gen Microbiol. 1973 Sep;78(1):165–178. doi: 10.1099/00221287-78-1-165. [DOI] [PubMed] [Google Scholar]
- Owen R. J., Costas M., Sloss L. L. Electrophoretic protein typing of Campylobacter jejuni subspecies "doylei" (nitrate-negative campylobacter-like organisms) from human faeces and gastric mucosa. Eur J Epidemiol. 1988 Sep;4(3):277–283. doi: 10.1007/BF00148910. [DOI] [PubMed] [Google Scholar]
- Roop R. M., 2nd, Smibert R. M., Johnson J. L., Krieg N. R. DNA homology studies of the catalase-negative campylobacters and "Campylobacter fecalis," an emended description of Campylobacter sputorum, and proposal of the neotype strain of Campylobacter sputorum. Can J Microbiol. 1985 Sep;31(9):823–831. doi: 10.1139/m85-154. [DOI] [PubMed] [Google Scholar]
- Roop R. M., 2nd, Smibert R. M., Johnson J. L., Krieg N. R. Differential characteristics of catalase-positive campylobacters correlated with DNA homology groups. Can J Microbiol. 1984 Jul;30(7):938–951. doi: 10.1139/m84-147. [DOI] [PubMed] [Google Scholar]
- Steele T. W., Sangster N., Lanser J. A. DNA relatedness and biochemical features of Campylobacter spp. isolated in central and South Australia. J Clin Microbiol. 1985 Jul;22(1):71–74. doi: 10.1128/jcm.22.1.71-74.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanner A. C. Characterization of Wolinella spp., Campylobacter concisus, Bacteroides gracilis, and Eikenella corrodens by polyacrylamide gel electrophoresis. J Clin Microbiol. 1986 Oct;24(4):562–565. doi: 10.1128/jcm.24.4.562-565.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanner A. C., Dzink J. L., Ebersole J. L., Socransky S. S. Wolinella recta, campylobacter concisus, bacteroides gracilis, and Eikenella corrodens from periodontal lesions. J Periodontal Res. 1987 Jul;22(4):327–330. doi: 10.1111/j.1600-0765.1987.tb01593.x. [DOI] [PubMed] [Google Scholar]
- Tanner A. C., Haffer C., Bratthall G. T., Visconti R. A., Socransky S. S. A study of the bacteria associated with advancing periodontitis in man. J Clin Periodontol. 1979 Oct;6(5):278–307. doi: 10.1111/j.1600-051x.1979.tb01931.x. [DOI] [PubMed] [Google Scholar]
- van Palenstein Helderman W. H. Total viable count and differential count of vibrio (campylobacter) sputorum, fusobacterium nucleatum, selenomonas sputigena, bacteroides ochraceus and veillonella in the inflamed and non inflamed human gingival crevice. J Periodontal Res. 1975 Nov;10(5):294–305. doi: 10.1111/j.1600-0765.1975.tb00037.x. [DOI] [PubMed] [Google Scholar]