Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1990 Apr;28(4):654–659. doi: 10.1128/jcm.28.4.654-659.1990

Comparisons of Pasteurella multocida lipopolysaccharides by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to determine relationship between group B and E hemorrhagic septicemia strains and serologically related group A strains.

R B Rimler 1
PMCID: PMC267771  PMID: 2332462

Abstract

Lipopolysaccharides (LPSs) purified from 16 reference somatic serotypes of Pasteurella multocida were examined and compared by discontinuous sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Resolution of LPS patterns in a gel was optimum when sample wells were cast separately from the stacking gel and the running gel consisted of 15% T (total monomer) polyacrylamide and 4 M deionized urea. Band patterns of P. multocida LPSs in a gel differed from control Salmonella minnesota wild-type and core mutant LPSs. Although the band patterns and mobilities of LPSs from some P. multocida reference serotypes were similar, none were identical. Evidence for O antigens similar to those produced by enterobacteria was not observed. Proteinase K digestion of whole P. multocida cells resulted in LPS band patterns similar to those of purified LPS. The presence or absence of a capsule on a strain had no major influence on band patterns in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Comparisons of LPS patterns of group B and E hemorrhagic septicemia strains with those of serologically related group A strains of P. multocida indicated that they were similar. Typing antisera made with purified serotype 2 or 5 LPS reacted with electroblots of all these strains. However, the reactions did not distinguish strains as being serotype 2 or 5.

Full text

PDF
654

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Galanos C., Lüderitz O., Westphal O. A new method for the extraction of R lipopolysaccharides. Eur J Biochem. 1969 Jun;9(2):245–249. doi: 10.1111/j.1432-1033.1969.tb00601.x. [DOI] [PubMed] [Google Scholar]
  2. Heddleston K. L., Gallagher J. E., Rebers P. A. Fowl cholera: gel diffusion precipitin test for serotyping Pasteruella multocida from avian species. Avian Dis. 1972 Jul-Sep;16(4):925–936. [PubMed] [Google Scholar]
  3. Hitchcock P. J. Analyses of gonococcal lipopolysaccharide in whole-cell lysates by sodium dodecyl sulfate-polyacrylamide gel electrophoresis: stable association of lipopolysaccharide with the major outer membrane protein (protein I) of Neisseria gonorrhoeae. Infect Immun. 1984 Oct;46(1):202–212. doi: 10.1128/iai.46.1.202-212.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hitchcock P. J., Brown T. M. Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J Bacteriol. 1983 Apr;154(1):269–277. doi: 10.1128/jb.154.1.269-277.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Lugtenberg B., van Boxtel R., de Jong M. Atrophic rhinitis in swine: correlation of Pasteurella multocida pathogenicity with membrane protein and lipopolysaccharide patterns. Infect Immun. 1984 Oct;46(1):48–54. doi: 10.1128/iai.46.1.48-54.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Manning P. J., Naasz M. A., DeLong D., Leary S. L. Pasteurellosis in laboratory rabbits: characterization of lipopolysaccharides of Pasteurella multocida by polyacrylamide gel electrophoresis, immunoblot techniques, and enzyme-linked immunosorbent assay. Infect Immun. 1986 Sep;53(3):460–463. doi: 10.1128/iai.53.3.460-463.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Pelkonen S., Häyrinen J., Finne J. Polyacrylamide gel electrophoresis of the capsular polysaccharides of Escherichia coli K1 and other bacteria. J Bacteriol. 1988 Jun;170(6):2646–2653. doi: 10.1128/jb.170.6.2646-2653.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Peppler M. S. Two physically and serologically distinct lipopolysaccharide profiles in strains of Bordetella pertussis and their phenotype variants. Infect Immun. 1984 Jan;43(1):224–232. doi: 10.1128/iai.43.1.224-232.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rimler R. B., Angus R. D., Phillips M. Evaluation of the specificity of Pasteurella multocida somatic antigen-typing antisera prepared in chickens, using ribosome-lipopolysaccharide complexes as inocula. Am J Vet Res. 1989 Jan;50(1):29–31. [PubMed] [Google Scholar]
  10. Rimler R. B., Brogden K. A. Pasteurella multocida isolated from rabbits and swine: serologic types and toxin production. Am J Vet Res. 1986 Apr;47(4):730–737. [PubMed] [Google Scholar]
  11. Rimler R. B., Phillips M. Fowl cholera: protection against Pasteurella multocida by ribosome-lipopolysaccharide vaccine. Avian Dis. 1986 Apr-Jun;30(2):409–415. [PubMed] [Google Scholar]
  12. Rimler R. B., Rebers P. A., Phillips M. Lipopolysaccharides of the Heddleston serotypes of Pasteurella multocida. Am J Vet Res. 1984 Apr;45(4):759–763. [PubMed] [Google Scholar]
  13. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tsai C. M., Frasch C. E. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem. 1982 Jan 1;119(1):115–119. doi: 10.1016/0003-2697(82)90673-x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES