Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1990 Jul;28(7):1530–1537. doi: 10.1128/jcm.28.7.1530-1537.1990

A galactosyl(alpha 1-3)mannose epitope on phospholipids of Leishmania mexicana and L. braziliensis is recognized by trypanosomatid-infected human sera.

J L Avila 1, M Rojas 1
PMCID: PMC267983  PMID: 1696285

Abstract

An immunoglobulin M antibody reactive with galactosyl(alpha 1-3)mannose [Gal(alpha 1-3)Man] residues present on phospholipids extracted from Leishmania mexicana and L. braziliensis was found to be present in high titer in the serum of every normal individual studied. Periodate oxidation, acid hydrolysis, or acetylation suppressed immunoreactivity, suggesting that an oligosaccharide chain was responsible for antibody binding. Interaction occurs only with alpha-Gal terminal residues, since treatment of purified glycophospholipids with alpha-galactosidase but not with beta-galactosidase abolished it. Antibody bound to galactosyl(alpha 1-3)galactose-linked synthetic antigens but did not bind to the same residues present in rabbit, rat, and guinea pig erythrocytes or in murine laminin. Antigen-antibody binding was strongly blocked with Gal(alpha 1-3)Man and Gal(beta 1-4)Man. These results plus inhibition studies with several oligosaccharides suggest that they are indeed different from antibodies against the galactosyl(alpha 1-3)galactose residue. Anti-Gal(alpha 1-3)Man antibody values were significantly elevated in 89% of patients with diffuse cutaneous leishmaniasis, 84% of patients with localized cutaneous leishmaniasis, 69% of patients with mucocutaneous leishmaniasis, and 44 and 62% of patients with Trypanosoma cruzi or T. rangeli infection, respectively, but not in patients with 15 other different infectious and inflammatory diseases. Anti-Gal(alpha 1-3)Man antibody readily absorbed to American Leishmania and Trypanosoma culture forms, suggesting a surface membrane localization of reactive epitope. Gal(alpha 1-3)Man-bearing glycophospholipid was easily extracted from American Leishmania promastigotes and T. cruzi trypomastigotes as well as from American Trypanosoma culture forms. The possibility that this antibody arises against parasitic glycophospholipid-linked Gal(alpha 1-3)Man terminal residues is proposed.

Full text

PDF
1530

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anthony R. L., Christensen H. A., Johnson C. M. Micro enzyme-linked immunosorbent assay (ELISA) for the serodiagnosis of New World leishmaniasis. Am J Trop Med Hyg. 1980 Mar;29(2):190–194. doi: 10.4269/ajtmh.1980.29.190. [DOI] [PubMed] [Google Scholar]
  2. Avila J. L., Avila A. Defective transport of pyrazolopyrimidine ribosides in insensitive Trypanosoma cruzi wild strains is a parasite-stage specific and reversible characteristic. Comp Biochem Physiol B. 1987;87(3):489–495. doi: 10.1016/0305-0491(87)90042-3. [DOI] [PubMed] [Google Scholar]
  3. Avila J. L., Avila A., de Casanova M. A. Differential metabolism of allopurinol and derivatives in Trypanosoma rangeli and T. cruzi culture forms. Mol Biochem Parasitol. 1981 Dec 31;4(5-6):265–272. doi: 10.1016/0166-6851(81)90059-1. [DOI] [PubMed] [Google Scholar]
  4. Avila J. L., Bretaña A., Casanova M. A., Avila A., Rodríguez F. Trypanosoma cruzi: defined medium for continuous cultivation of virulent parasites. Exp Parasitol. 1979 Aug;48(1):27–35. doi: 10.1016/0014-4894(79)90051-1. [DOI] [PubMed] [Google Scholar]
  5. Avila J. L., Polegre M. A., Robins R. K. Action of pyrazolopyrimidine derivatives on Trypanosoma rangeli culture forms. Comp Biochem Physiol C. 1986;83(2):291–294. doi: 10.1016/0742-8413(86)90125-8. [DOI] [PubMed] [Google Scholar]
  6. Avila J. L., Rojas M., Galili U. Immunogenic Gal alpha 1----3Gal carbohydrate epitopes are present on pathogenic American Trypanosoma and Leishmania. J Immunol. 1989 Apr 15;142(8):2828–2834. [PubMed] [Google Scholar]
  7. Avila J. L., Rojas M., García L. Persistence of elevated levels of galactosyl-alpha(1-3)galactose antibodies in sera from patients cured of visceral leishmaniasis. J Clin Microbiol. 1988 Sep;26(9):1842–1847. doi: 10.1128/jcm.26.9.1842-1847.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Avila J. L., Rojas M., Rieber M. Antibodies to laminin in American cutaneous leishmaniasis. Infect Immun. 1984 Jan;43(1):402–406. doi: 10.1128/iai.43.1.402-406.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Avila J. L., Rojas M., Towbin H. Serological activity against galactosyl-alpha(1-3)galactose in sera from patients with several kinetoplastida infections. J Clin Microbiol. 1988 Jan;26(1):126–132. doi: 10.1128/jcm.26.1.126-132.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Avila J. L., Rojas M., Velazquez-Avila G., Rieber M. Antibodies to laminin in Trypanosoma rangeli-infected subjects. Parasitol Res. 1987;73(2):178–179. doi: 10.1007/BF00536476. [DOI] [PubMed] [Google Scholar]
  11. Avila J. L., Rojas M., Velazquez-Avila G., von der Mark H., Timpl R. Antibodies to basement membrane protein nidogen in Chagas' disease and American cutaneous leishmaniasis. J Clin Microbiol. 1986 Nov;24(5):775–778. doi: 10.1128/jcm.24.5.775-778.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Beach D. H., Holz G. G., Jr, Anekwe G. E. Lipids of Leishmania promastigotes. J Parasitol. 1979 Apr;65(2):201–216. [PubMed] [Google Scholar]
  13. Carroll M., McCrorie P. Lipid composition of bloodstream forms of Trypanosoma brucei brucei. Comp Biochem Physiol B. 1986;83(3):647–651. doi: 10.1016/0305-0491(86)90312-3. [DOI] [PubMed] [Google Scholar]
  14. Convit J., Castellanos P. L., Rondon A., Pinardi M. E., Ulrich M., Castes M., Bloom B., Garcia L. Immunotherapy versus chemotherapy in localised cutaneous leishmaniasis. Lancet. 1987 Feb 21;1(8530):401–405. doi: 10.1016/s0140-6736(87)90116-4. [DOI] [PubMed] [Google Scholar]
  15. Dixon H., Williamson J. The lipid composition of blood and culture forms of Trypanosoma lewisi and Trypanosoma rhodesiense compared with that of their environment. Comp Biochem Physiol. 1970 Mar 1;33(1):111–128. doi: 10.1016/0010-406x(70)90487-1. [DOI] [PubMed] [Google Scholar]
  16. Elhay M. J., McConville M. J., Handman E. Immunochemical characterization of a glyco-inositol-phospholipid membrane antigen of Leishmania major. J Immunol. 1988 Aug 15;141(4):1326–1331. [PubMed] [Google Scholar]
  17. Ferguson M. A., Williams A. F. Cell-surface anchoring of proteins via glycosyl-phosphatidylinositol structures. Annu Rev Biochem. 1988;57:285–320. doi: 10.1146/annurev.bi.57.070188.001441. [DOI] [PubMed] [Google Scholar]
  18. Franco da Silveira J., Colli W. Chemical composition of the plasma membrane from epimastigote forms of Trypanosoma cruzi. Biochim Biophys Acta. 1981 Jun 22;644(2):341–350. doi: 10.1016/0005-2736(81)90392-8. [DOI] [PubMed] [Google Scholar]
  19. Galili U., Buehler J., Shohet S. B., Macher B. A. The human natural anti-Gal IgG. III. The subtlety of immune tolerance in man as demonstrated by crossreactivity between natural anti-Gal and anti-B antibodies. J Exp Med. 1987 Mar 1;165(3):693–704. doi: 10.1084/jem.165.3.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Galili U., Mandrell R. E., Hamadeh R. M., Shohet S. B., Griffiss J. M. Interaction between human natural anti-alpha-galactosyl immunoglobulin G and bacteria of the human flora. Infect Immun. 1988 Jul;56(7):1730–1737. doi: 10.1128/iai.56.7.1730-1737.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Guimarães M. C., Celeste B. J., de Castilho E. A., Mineo J. R., Diniz J. M. Immunoenzymatic assy (ELISA) in mucocutaneous leishmaniasis, kala-azar, and Chagas' disease: an epimastigote Trypanosoma cruzi antigen able to distinguish between anti-Trypanosoma and anti-Leishmania antibodies. Am J Trop Med Hyg. 1981 Sep;30(5):942–947. doi: 10.4269/ajtmh.1981.30.942. [DOI] [PubMed] [Google Scholar]
  22. Kaneda Y., Nagakura K., Goutsu T. Lipid composition of three morphological stages of Trypanosoma cruzi. Comp Biochem Physiol B. 1986;83(3):533–536. doi: 10.1016/0305-0491(86)90292-0. [DOI] [PubMed] [Google Scholar]
  23. Ledeen R. W., Yu R. K., Eng L. F. Gangliosides of human myelin: sialosylgalactosylceramide (G7) as a major component. J Neurochem. 1973 Oct;21(4):829–839. doi: 10.1111/j.1471-4159.1973.tb07527.x. [DOI] [PubMed] [Google Scholar]
  24. MacDonald D. L., Patt L. M., Hakomori S. Notes on improved procedures for the chemical modification and degradation of glycosphingolipids. J Lipid Res. 1980 Jul;21(5):642–645. [PubMed] [Google Scholar]
  25. McConville M. J., Bacic A. A family of glycoinositol phospholipids from Leishmania major. Isolation, characterization, and antigenicity. J Biol Chem. 1989 Jan 15;264(2):757–766. [PubMed] [Google Scholar]
  26. Rosen G., Londner M. V., Sevlever D., Greenblatt C. L. Leishmania major: glycolipid antigens recognized by immune human sera. Mol Biochem Parasitol. 1988 Jan 1;27(1):93–99. doi: 10.1016/0166-6851(88)90028-x. [DOI] [PubMed] [Google Scholar]
  27. Rosen G., Påhlsson P., Londner M. V., Westerman M. E., Nilsson B. Structural analysis of glycosyl-phosphatidylinositol antigens of Leishmania major. J Biol Chem. 1989 Jun 25;264(18):10457–10463. [PubMed] [Google Scholar]
  28. Towbin H., Rosenfelder G., Wieslander J., Avila J. L., Rojas M., Szarfman A., Esser K., Nowack H., Timpl R. Circulating antibodies to mouse laminin in Chagas disease, American cutaneous leishmaniasis, and normal individuals recognize terminal galactosyl(alpha 1-3)-galactose epitopes. J Exp Med. 1987 Aug 1;166(2):419–432. doi: 10.1084/jem.166.2.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Turco S. J., Hull S. R., Orlandi P. A., Jr, Shepherd S. D., Homans S. W., Dwek R. A., Rademacher T. W. Structure of the major carbohydrate fragment of the Leishmania donovani lipophosphoglycan. Biochemistry. 1987 Sep 22;26(19):6233–6238. doi: 10.1021/bi00393a042. [DOI] [PubMed] [Google Scholar]
  30. Villalta F., Kierszenbaum F. Host cell invasion by Trypanosoma cruzi: role of cell surface galactose residues. Biochem Biophys Res Commun. 1984 Feb 29;119(1):228–235. doi: 10.1016/0006-291x(84)91642-5. [DOI] [PubMed] [Google Scholar]
  31. Wassef M. K., Fioretti T. B., Dwyer D. M. Lipid analyses of isolated surface membranes of Leishmania donovani promastigotes. Lipids. 1985 Feb;20(2):108–115. doi: 10.1007/BF02534216. [DOI] [PubMed] [Google Scholar]
  32. Yang H. J., Hakomori S. I. A sphingolipid having a novel type of ceramide and lacto-N-fucopentaose 3. J Biol Chem. 1971 Mar 10;246(5):1192–1200. [PubMed] [Google Scholar]
  33. de Lederkremer R. M., Casal O. L., Tanaka C. T., Colli W. Ceramide and inositol content of the lipopeptidophosphoglycan from Trypanosoma cruzi. Biochem Biophys Res Commun. 1978 Dec 29;85(4):1268–1274. doi: 10.1016/0006-291x(78)91140-3. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES