Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1990 Aug;28(8):1867–1869. doi: 10.1128/jcm.28.8.1867-1869.1990

Use of commercially available rapid chloramphenicol acetyltransferase test to detect resistance in Salmonella species.

L de la Maza 1, S I Miller 1, M J Ferraro 1
PMCID: PMC268063  PMID: 2394807

Abstract

Chloramphenicol resistance among Salmonella spp. has important public health and clinical implications, especially in areas of the world where these strains are endemic. The availability of rapid and sensitive screening methods for detection of antibiotic resistance is important. Therefore, we tested 33 strains of Salmonella for chloramphenicol acetyltransferase (CAT) activity using two rapid techniques. Evaluation of a 1-h tube method and a 30-min commercial disk procedure demonstrated that they are as accurate as standardized susceptibility techniques. Both the 1-h tube and 30-min disk methods detected CAT enzymatic activity produced by one CAT gene copy per cell.

Full text

PDF
1867

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azemun P., Stull T., Roberts M., Smith A. L. Rapid detection of chloramphenicol resistance in Haemophilus influenzae. Antimicrob Agents Chemother. 1981 Aug;20(2):168–170. doi: 10.1128/aac.20.2.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brown J. D., Duong Hong M. o., Rhoades E. R. Chloramphenicol-resistant Salmonella typhi in Saigon. JAMA. 1975 Jan 13;231(2):162–166. [PubMed] [Google Scholar]
  3. Celum C. L., Chaisson R. E., Rutherford G. W., Barnhart J. L., Echenberg D. F. Incidence of salmonellosis in patients with AIDS. J Infect Dis. 1987 Dec;156(6):998–1002. doi: 10.1093/infdis/156.6.998. [DOI] [PubMed] [Google Scholar]
  4. Cohen S. L., Wylie B. A., Sooka A., Koornhof H. J. Bacteremia caused by a lactose-fermenting, multiply resistant Salmonella typhi strain in a patient recovering from typhoid fever. J Clin Microbiol. 1987 Aug;25(8):1516–1518. doi: 10.1128/jcm.25.8.1516-1518.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dajani A. S., Kauffman R. E. The renaissance of chloramphenicol. Pediatr Clin North Am. 1981 Feb;28(1):195–202. doi: 10.1016/s0031-3955(16)33970-0. [DOI] [PubMed] [Google Scholar]
  6. Edelman R., Levine M. M. Summary of an international workshop on typhoid fever. Rev Infect Dis. 1986 May-Jun;8(3):329–349. doi: 10.1093/clinids/8.3.329. [DOI] [PubMed] [Google Scholar]
  7. Elliott T., Roth J. R. Characterization of Tn10d-Cam: a transposition-defective Tn10 specifying chloramphenicol resistance. Mol Gen Genet. 1988 Aug;213(2-3):332–338. doi: 10.1007/BF00339599. [DOI] [PubMed] [Google Scholar]
  8. Feder H. M., Jr, Osier C., Maderazo E. G. Chloramphenicol: A review of its use in clinical practice. Rev Infect Dis. 1981 May-Jun;3(3):479–491. doi: 10.1093/clinids/3.3.479. [DOI] [PubMed] [Google Scholar]
  9. Goldstein F. W., Chumpitaz J. C., Guevara J. M., Papadopoulou B., Acar J. F., Vieu J. F. Plasmid-mediated resistance to multiple antibiotics in Salmonella typhi. J Infect Dis. 1986 Feb;153(2):261–266. doi: 10.1093/infdis/153.2.261. [DOI] [PubMed] [Google Scholar]
  10. Kenny J. F., Isburg C. D., Michaels R. H. Meningitis due to Haemophilus influenzae type b resistant to both ampicillin and chloramphenicol. Pediatrics. 1980 Jul;66(1):14–16. [PubMed] [Google Scholar]
  11. Matthews H. W., Baker C. N., Thornsberry C. Relationship between in vitro susceptibility test results for chloramphenicol and production of chloramphenicol acetyltransferase by Haemophilus influenzae, Streptococcus pneumoniae, and Aerococcus species. J Clin Microbiol. 1988 Nov;26(11):2387–2390. doi: 10.1128/jcm.26.11.2387-2390.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Miller S. I., Kukral A. M., Mekalanos J. J. A two-component regulatory system (phoP phoQ) controls Salmonella typhimurium virulence. Proc Natl Acad Sci U S A. 1989 Jul;86(13):5054–5058. doi: 10.1073/pnas.86.13.5054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Olarte J., Galindo E. Salmonella typhi resistant to chloramphenicol, ampicillin, and other antimicrobial agents: strains isolated during an extensive typhoid fever epidemic in Mexico. Antimicrob Agents Chemother. 1973 Dec;4(6):597–601. doi: 10.1128/aac.4.6.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pato M. V., Gerbaud G., David M. Résistance de Salmonella typhi au chloramphénicol dan une région au nord de Lisbonne. Ann Microbiol (Paris) 1980 Jan-Feb;131(1):31–37. [PubMed] [Google Scholar]
  15. Shaw W. V. Chloramphenicol acetyltransferase: enzymology and molecular biology. CRC Crit Rev Biochem. 1983;14(1):1–46. doi: 10.3109/10409238309102789. [DOI] [PubMed] [Google Scholar]
  16. Smith S. M., Palumbo P. E., Edelson P. J. Salmonella strains resistant to multiple antibiotics: therapeutic implications. Pediatr Infect Dis. 1984 Sep-Oct;3(5):455–460. doi: 10.1097/00006454-198409000-00017. [DOI] [PubMed] [Google Scholar]
  17. Soberon X., Covarrubias L., Bolivar F. Construction and characterization of new cloning vehicles. IV. Deletion derivatives of pBR322 and pBR325. Gene. 1980 May;9(3-4):287–305. doi: 10.1016/0378-1119(90)90328-o. [DOI] [PubMed] [Google Scholar]
  18. Uchiyama N., Greene G. R., Kitts D. B., Thrupp L. D. Meningitis due to Haemophilus influenzae type b resistant to ampicillin and chloramphenicol. J Pediatr. 1980 Sep;97(3):421–424. doi: 10.1016/s0022-3476(80)80193-4. [DOI] [PubMed] [Google Scholar]
  19. Yunis A. A. Chloramphenicol-induced bone marrow suppression. Semin Hematol. 1973 Jul;10(3):225–234. [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES