Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1990 Oct;28(10):2327–2330. doi: 10.1128/jcm.28.10.2327-2330.1990

Acyclovir treatment for varicella does not lower gpI and IE-62 (p170) antibody responses to varicella-zoster virus in normal children.

J A Englund 1, A M Arvin 1, H H Balfour Jr 1
PMCID: PMC268170  PMID: 2172288

Abstract

The varicella-zoster virus (VZV) membrane glycoprotein gpI elicits a major immunoglobulin G antibody response after naturally acquired VZV infection; antibody to a nonglycosylated immediate-early protein, IE-62 (p170), represents a response to a nonmembrane VZV component. We evaluated antibody response to VZV gpI and IE-62 (p170) at 28 days and 1 year following infection in 34 children (ages 5 to 16 years) enrolled in a randomized placebo-controlled study of oral acyclovir for the treatment of varicella. All children were VZV antibody negative at enrollment, were previously healthy, and had laboratory-documented varicella. Compared with placebo recipients, acyclovir recipients had lower geometric mean titers by the fluorescent antibody to membrane antigen technique at 28 days (620 versus 836) but similar titers at 1 year (122 versus 122). All children had antibodies to gpI and IE-62 detectable by enzyme-linked immunosorbent assay at 28 days and 1 year. No difference in gpI at 28 days compared with 1 year was noted in acyclovir recipients. No difference in antibody to IE-62 (p170) was noted when acyclovir and placebo recipients were compared at either 28 days or 1 year. Antibody responses to gpI and IE were similar when children were stratified by age (5 to 6 years, 7 to 11 years, 12 to 16 years). A short course of oral acyclovir for the treatment of varicella did not affect antibody responses to gpI or IE-62 (p170) in healthy children at 28 days and 1 year following varicella.

Full text

PDF
2327

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arvin A. M., Kinney-Thomas E., Shriver K., Grose C., Koropchak C. M., Scranton E., Wittek A. E., Diaz P. S. Immunity to varicella-zoster viral glycoproteins, gp I (gp 90/58) and gp III (gp 118), and to a nonglycosylated protein, p 170. J Immunol. 1986 Aug 15;137(4):1346–1351. [PubMed] [Google Scholar]
  2. Arvin A. M., Koropchak C. M., Williams B. R., Grumet F. C., Foung S. K. Early immune response in healthy and immunocompromised subjects with primary varicella-zoster virus infection. J Infect Dis. 1986 Sep;154(3):422–429. doi: 10.1093/infdis/154.3.422. [DOI] [PubMed] [Google Scholar]
  3. Ashley R. L., Corey L. Effect of acyclovir treatment of primary genital herpes on the antibody response to herpes simplex virus. J Clin Invest. 1984 Mar;73(3):681–688. doi: 10.1172/JCI111260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Balfour H. H., Jr, Edelman C. K., Dirksen C. L., Palermo D. R., Suarez C. S., Kelly J., Kentala J. T., Crane D. D. Laboratory studies of acute varicella and varicella immune status. Diagn Microbiol Infect Dis. 1988 Jul;10(3):149–158. doi: 10.1016/0732-8893(88)90034-x. [DOI] [PubMed] [Google Scholar]
  5. Balfour H. H., Jr, Kelly J. M., Suarez C. S., Heussner R. C., Englund J. A., Crane D. D., McGuirt P. V., Clemmer A. F., Aeppli D. M. Acyclovir treatment of varicella in otherwise healthy children. J Pediatr. 1990 Apr;116(4):633–639. doi: 10.1016/s0022-3476(05)81618-x. [DOI] [PubMed] [Google Scholar]
  6. Bernstein D. I., Lovett M. A., Bryson Y. J. The effects of acyclovir on antibody response to herpes simplex virus in primary genital herpetic infections. J Infect Dis. 1984 Jul;150(1):7–13. doi: 10.1093/infdis/150.1.7. [DOI] [PubMed] [Google Scholar]
  7. Bogger-Goren S., Baba K., Hurley P., Yabuuchi H., Takahashi M., Ogra P. L. Antibody response to varicella-zoster virus after natural or vaccine-induced infection. J Infect Dis. 1982 Aug;146(2):260–265. doi: 10.1093/infdis/146.2.260. [DOI] [PubMed] [Google Scholar]
  8. Brunell P. A., Novelli V. M., Keller P. M., Ellis R. W. Antibodies to the three major glycoproteins of varicella-zoster virus: search for the relevant host immune response. J Infect Dis. 1987 Sep;156(3):430–435. doi: 10.1093/infdis/156.3.430. [DOI] [PubMed] [Google Scholar]
  9. Davison A. J., Edson C. M., Ellis R. W., Forghani B., Gilden D., Grose C., Keller P. M., Vafai A., Wroblewska Z., Yamanishi K. New common nomenclature for glycoprotein genes of varicella-zoster virus and their glycosylated products. J Virol. 1986 Mar;57(3):1195–1197. doi: 10.1128/jvi.57.3.1195-1197.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Diaz P. S., Smith S., Hunter E., Arvin A. M. Immunity to whole varicella-zoster virus antigen and glycoproteins I and p170: relation to the immunizing regimen of live attenuated varicella vaccine. J Infect Dis. 1988 Dec;158(6):1245–1252. doi: 10.1093/infdis/158.6.1245. [DOI] [PubMed] [Google Scholar]
  11. Dubey L., Steinberg S. P., LaRussa P., Oh P., Gershon A. A. Western blot analysis of antibody to varicella-zoster virus. J Infect Dis. 1988 May;157(5):882–888. doi: 10.1093/infdis/157.5.882. [DOI] [PubMed] [Google Scholar]
  12. Giller R. H., Winistorfer S., Grose C. Cellular and humoral immunity to varicella zoster virus glycoproteins in immune and susceptible human subjects. J Infect Dis. 1989 Dec;160(6):919–928. doi: 10.1093/infdis/160.6.919. [DOI] [PubMed] [Google Scholar]
  13. Gold D., Ashley R., Solberg G., Abbo H., Corey L. Chronic-dose acyclovir to suppress frequently recurring genital herpes simplex virus infection: effect on antibody response to herpes simplex virus type 2 proteins. J Infect Dis. 1988 Dec;158(6):1227–1234. doi: 10.1093/infdis/158.6.1227. [DOI] [PubMed] [Google Scholar]
  14. Grose C., Litwin V. Immunology of the varicella-zoster virus glycoproteins. J Infect Dis. 1988 May;157(5):877–881. doi: 10.1093/infdis/157.5.877. [DOI] [PubMed] [Google Scholar]
  15. Grose C. Zoster in children with cancer: radioimmune precipitation profiles of sera before and after illness. J Infect Dis. 1983 Jan;147(1):47–56. doi: 10.1093/infdis/147.1.47. [DOI] [PubMed] [Google Scholar]
  16. Keller P. M., Neff B. J., Ellis R. W. Three major glycoprotein genes of varicella-zoster virus whose products have neutralization epitopes. J Virol. 1984 Oct;52(1):293–297. doi: 10.1128/jvi.52.1.293-297.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mitchell C. D., Gehrz R. C., Balfour H. H., Jr Varicella-zoster-specific immune responses in acute herpes zoster during a placebo-controlled trial of oral acyclovir therapy. Diagn Microbiol Infect Dis. 1986 Jul;5(2):113–126. doi: 10.1016/0732-8893(86)90113-6. [DOI] [PubMed] [Google Scholar]
  18. Nyerges G., Meszner Z., Gyarmati E., Kerpel-Fronius S. Acyclovir prevents dissemination of varicella in immunocompromised children. J Infect Dis. 1988 Feb;157(2):309–313. doi: 10.1093/infdis/157.2.309. [DOI] [PubMed] [Google Scholar]
  19. Prober C. G., Kirk L. E., Keeney R. E. Acyclovir therapy of chickenpox in immunosuppressed children--a collaborative study. J Pediatr. 1982 Oct;101(4):622–625. doi: 10.1016/s0022-3476(82)80725-7. [DOI] [PubMed] [Google Scholar]
  20. Shiraki K., Hyman R. W. The immediate early proteins of varicella-zoster virus. Virology. 1987 Feb;156(2):423–426. doi: 10.1016/0042-6822(87)90423-5. [DOI] [PubMed] [Google Scholar]
  21. Weigle K. A., Grose C. Common expression of varicella-zoster viral glycoprotein antigens in vitro and in chickenpox and zoster vesicles. J Infect Dis. 1983 Oct;148(4):630–638. doi: 10.1093/infdis/148.4.630. [DOI] [PubMed] [Google Scholar]
  22. Weigle K. A., Grose C. Molecular dissection of the humoral immune response to individual varicella-zoster viral proteins during chickenpox, quiescence, reinfection, and reactivation. J Infect Dis. 1984 May;149(5):741–749. doi: 10.1093/infdis/149.5.741. [DOI] [PubMed] [Google Scholar]
  23. Williams V., Gershon A., Brunell P. A. Serologic response to varicella-zoster membrane antigens measured by direct immunofluorescence. J Infect Dis. 1974 Dec;130(6):669–672. doi: 10.1093/infdis/130.6.669. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES