Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1990 Nov;28(11):2576–2577. doi: 10.1128/jcm.28.11.2576-2577.1990

Ability to bind salivary alpha-amylase discriminates certain viridans group streptococcal species.

M Kilian 1, B Nyvad 1
PMCID: PMC268230  PMID: 2254435

Abstract

A collection of 144 viridans group streptococcal strains recently characterized as part of a taxonomic study was examined for the ability to bind salivary alpha-amylase. This property was found in most strains of Streptococcus gordonii and Streptococcus mitis and in occasional strains of Streptococcus anginosus and Streptococcus salivarius. In contrast, all strains of Streptococcus sanguis, Streptococcus oralis, Streptococcus vestibularis, and Streptococcus mutans lacked alpha-amylase-binding capacity. A rapid and easy assay described in this paper may be an important supplementary test for identification of oral streptococci.

Full text

PDF
2576

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Hashimi I., Levine M. J. Characterization of in vivo salivary-derived enamel pellicle. Arch Oral Biol. 1989;34(4):289–295. doi: 10.1016/0003-9969(89)90070-8. [DOI] [PubMed] [Google Scholar]
  2. Coykendall A. L. Classification and identification of the viridans streptococci. Clin Microbiol Rev. 1989 Jul;2(3):315–328. doi: 10.1128/cmr.2.3.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Douglas C. W., Pease A. A., Whiley R. A. Amylase-binding as a discriminator among oral streptococci. FEMS Microbiol Lett. 1990 Jan 1;54(1-3):193–197. doi: 10.1016/0378-1097(90)90281-t. [DOI] [PubMed] [Google Scholar]
  4. Douglas C. W. The binding of human salivary alpha-amylase by oral strains of streptococcal bacteria. Arch Oral Biol. 1983;28(7):567–573. doi: 10.1016/0003-9969(83)90003-1. [DOI] [PubMed] [Google Scholar]
  5. Karn R. C. The comparative biochemistry, physiology, and genetics of animal alpha-amylases. Adv Comp Physiol Biochem. 1978;7:1–103. doi: 10.1016/b978-0-12-011507-5.50007-0. [DOI] [PubMed] [Google Scholar]
  6. Nyvad B., Kilian M. Comparison of the initial streptococcal microflora on dental enamel in caries-active and in caries-inactive individuals. Caries Res. 1990;24(4):267–272. doi: 10.1159/000261281. [DOI] [PubMed] [Google Scholar]
  7. Orstavik D., Kraus F. W. The acquired pellicle: immunofluorescent demonstration of specific proteins. J Oral Pathol. 1973;2(1):68–76. doi: 10.1111/j.1600-0714.1973.tb01675.x. [DOI] [PubMed] [Google Scholar]
  8. Scannapieco F. A., Bergey E. J., Reddy M. S., Levine M. J. Characterization of salivary alpha-amylase binding to Streptococcus sanguis. Infect Immun. 1989 Sep;57(9):2853–2863. doi: 10.1128/iai.57.9.2853-2863.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Stiefel D. J. Characteristics of an in vitro dental pellicle. J Dent Res. 1976 Jan-Feb;55(1):66–73. doi: 10.1177/00220345760550012601. [DOI] [PubMed] [Google Scholar]
  10. Whiley R. A., Hardie J. M. DNA-DNA hybridization studies and phenotypic characteristics of strains within the 'Streptococcus milleri group'. J Gen Microbiol. 1989 Oct;135(10):2623–2633. doi: 10.1099/00221287-135-10-2623. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES