Skip to main content
Evolutionary Bioinformatics Online logoLink to Evolutionary Bioinformatics Online
. 2007 Sep 6;3:159–168.

The GC Skew Index: A Measure of Genomic Compositional Asymmetry and the Degree of Replicational Selection

Kazuharu Arakawa 1, Masaru Tomita 1,
PMCID: PMC2684130  PMID: 19461976

Abstract

Circular bacterial chromosomes have highly polarized nucleotide composition in the two replichores, and this genomic strand asymmetry can be visualized using GC skew graphs. Here we propose and discuss the GC skew index (GCSI) for the quantification of genomic compositional skew, which combines a normalized measure of fast Fourier transform to capture the shape of the skew graph and Euclidean distance between the two vertices in a cumulative skew graph to represent the degree of skew. We calculated GCSI for all available bacterial genomes, and GCSI correlated well with the visibility of GC skew. This novel index is useful for estimating confidence levels for the prediction of replication origin and terminus by methods based on GC skew and for measuring the strength of replicational selection in a genome.

Keywords: GC skew, DNA replication, replicational selection, fast Fourier transforms, bioinformatics, GCSI

Introduction

In circular bacterial chromosomes, the replication process starts from a finite replication origin (ori) and continues bidirectionally along the two arms (i.e. the replichores) until the replication complex reaches the replication terminus (ter), located directly opposite of ori (Rocha, 2004a; Rocha, 2004b). Replication is obviously the most fundamental and essential process in the cell cycle of bacteria, and replication also exerts genome-wide mutational and selection pressure, shaping genomic polarity with asymmetrically biased nucleotide composition in leading and lagging strands (Lobry and Louarn, 2003; Lobry and Sueoka, 2002). This compositional skew can be easily observed by plotting the normalized excess of guanine (G) over cytosine (C) content in a subgenomic region with sliding windows along the complete genome sequence (Lobry, 1996). Such a GC skew graph segregates the genome into two regions: one with an excess of G over C corresponding to the leading strand, and the other with an excess of C over G corresponding to the lagging strand. Moreover, the shift points of the GC skew graphs are reportedly correlated with the loci of ori and ter (Frank and Lobry, 1999). GC skew is observed in many bacterial species with circular chromosomes, although with varying clarity of the shift points, and GC skew is usually not detectable in symbionts and bacteria with linear chromosomes (Worning et al. 2006) or in archaeal genomes, which employ different machinery for the replication process (Grabowski and Kelman, 2003; Lopez et al. 1999; Myllykallio et al. 2000). GC skew is also observed in local genomic regions primarily introduced by RNA synthesis (Fujimori et al. 2005), but the overall genomic polarity due to replication is present regardless of these local effects, and the GC skew is thus observed in intergenic regions as well as in the third nucleotide positions in codons. Although the underlying causes for GC skew is not completely understood, hydrolytic deamination of cytosine in the leading strand in single-stranded state during replication, is suggested as the major contributing factor (Rocha, 2004b).

Because only a few ori and ter positions had been identified by experimental means, analysis of GC skew was first utilized for the computational prediction of ori and ter positions by examining available genome sequences (Frank and Lobry, 2000). Similar method using nucleotide gradients of T/C and A/G is utilized for the detection of unidirectional replication in mitochondria (Krishnan et al. 2004; Seligmann et al. 2006). To improve the accuracy of prediction, cumulative diagrams are commonly employed to balance out the noise in sequence composition and to eliminate the requirement for window slides (Grigoriev, 1998), coupled with purine and keto excesses and GC skew (Freeman et al. 1998). However, predictions based on these methods are less accurate in genomes where GC skew cannot be strongly observed (Zawilak et al. 2001). To observe the control of replicational selection on the various genomic properties, genomic compositional skews are also used in conjunction with other genomic features such as the gene orientation (McLean et al. 1998), the distribution of RAG oligomers recognized by the FtsK translocase (Hendrickson and Lawrence, 2006), and the codon bias of genes along the genome (Daubin and Perriere, 2003). To our knowledge, however, no method to quantify the strength of GC skew has been proposed; therefore, it is difficult to compare the effects of replicational selection across bacterial genomes.

In this work, we present the GC skew index (GCSI), which quantifies the strength of GC skew of a given genome by combining Fourier power spectral analysis with the Euclidean distance between the maximum and minimum of the cumulative skew vector. Spectral analysis using fast Fourier transform (FFT) is able to identify the frequency components contributing to a given signal, and it has been applied successfully to the field of bioinformatics (Dodin et al. 2000; Katoh et al. 2002; Yin and Yau, 2005). Because GC skew emerges from the mutational selection in the two replichores, the greatest contributing frequency component of GC skew should be at 1 Hz, with two clear shift points. This observation of a 1-Hz signal combined with the degree of skew calculated by the distance measure between the two vertices of a cumulative skew diagram effectively quantifies the skew of genomic compositional asymmetry.

Materials and Methods

Sequences and software

Complete circular chromosomal sequences of 303 bacteria and complete genome sequences of 29 archaeal genomes in GenBank format were selected and obtained from the NCBI RefSeq FTP repository (ftp://ftp.ncbi.nih.gov/genomes/Bacteria/). All analyses were conducted using the G-language Genome Analysis Environment version 1.6.11 (Arakawa et al. 2003; Arakawa and Tomita, 2006). The positional coordinate system for the genomic sequence used in this work was set to originate at 0, unlike that of GenBank, which uses 1 for the position of the first base.

Calculation of GC skew

GC skew was defined as the normalized excess of C over G in a given sequence, (C − G)/(C + G), which is calculated with sliding windows along the genome. GC skew is defined to be 0 when the amount of C equals that of G. To eliminate the use of window slides, cumulative skew can be calculated as the cumulative sum of the walker graph score at each nucleotide position along the genome, with scores A = 0, T = 0, G = 1, and C = −1. In this work, however, the cumulative GC skew was calculated by taking the cumulative sum of the GC skew in each of the windows, to normalize the cumulative skew strength without it being affected by the length of the genome.

Fast fourier transform

FFT is the computationally optimized derivation of discrete Fourier transform (DFT) for the number of sampling units in the power of two. FFT transforms a given signal in the time domain to reveal the frequency components comprising the input signal. GC skew can be thought of as a signal along the continuous axis of genomic position, which was used in place of the time domain in this work. DFT F(k) of a signal of length N, f (n), where n = 0, 1, …, N − 1, at frequency k was calculated as follows:

F(k)=n=0N1f(n)ei2πkn/N (1)

where i = √ 1̅. The power spectrum PS(k) of F(k) was further defined as

PS(k)=|F(k)|2,k=0,1,2,,N1 (2)

at each frequency k. In this power spectrum, GC skew shows the greatest contributing component at 1-Hz frequency, corresponding to the two replichores shifting between two regions of opposite polarity as in a sine curve (Arakawa et al. 2007). The Math:FFT module of Perl (http://search.cpan.org/~rkobes/Math-FFT-1.28/FFT.pm) was used for FFT calculation. To level the effects of genome size when comparing the diverse bacterial species, all genome sequences were divided into 4096 windows, and then the GC skew used as the initial signal, the cumulative GC skew, and the power spectra were calculated in these windows. Number of windows must be the power of two for effective FFT calculation, and here 212 = 4096 windows were used to take account of the effects of gene positioning, since this window size roughly corresponds the size of genes (about 1kbp) in bacterial genomes. This window size also eliminates other local mutational factors including those within genes, generated by functional requirements in RNA synthesis and translation.

GC skew index

Because cumulative skew should remain around zero under conditions of no strand bias and inversely increase its value in both positive and negative directions where bias is strong, Euclidean distance between the maximal and minimal vertices can be used as a measure of skew. The limitation of this approach and the central challenge for the quantification of genomic compositional skews, however, reside in the mathematical assessment of the skew structure to have exactly two regions physically balanced in length but with opposite polarity of nucleotide content. FFT is a good method for such a purpose, because it is able to reveal the contributing frequency components. Therefore, we used FFT to assess the fitness of the skew to the replicational selection model and combined this with the Euclidean distance between the two vertices of cumulative skew to calculate the GCSI. The GCSI is defined as the normalized average of the Euclidean distance between the two vertices of cumulative skew (dist) and the ratio of spectral strength at 1 Hz and the average strength of spectra in frequency regions 2 Hz or above (SR). Because the replicational selection is the single most dominant factor for GC strand bias, the ratio of spectral strength at 1-Hz frequency and that of all other spectra or their average must be greater than 1. SR was normalized by division with the rounded maximal SR of all bacterial genomes, which we defined here as 6000. Likewise, dist was normalized by 600.

Statistical assessment of the significance of GCSI

Significance of the GCSI values is tested using the distribution of GCSI calculated using two sets of randomized data: GCSI calculated using shuffled GC skew, where the window order is randomized using the GC skew values calculated with the original genome sequence, and GCSI calculated using shuffled genome, where the entire nucleotide sequence of the genome is shuffled while conserving the original nucleotide content. Due to calculation costs, statistical test was conducted using 1000 shuffled GC skew and 100 shuffled genome data sets. Distribution of the resulting GCSI values for the randomized data set was firstly tested for its normality using Kolmogorov-Smirnov Lilliefors test, and the significance of the original GCSI value is calculated using the z-score in the distribution of the randomized data set.

Results

To test the applicability of GCSI for the quantification of GC skew strength, we first assessed the correlation between the Euclidean distance of the two vertices of cumulative GC skew, dist, and the Fourier power spectrum ratio, SR, using all genomes (Fig. 1). The two measures correlated with an R2 value of 0.6673, showing that the predominance of the 1-Hz frequency component leads to a stronger degree of skew.

Figure 1.

Figure 1.

Scatter plot of spectral ratio RS against the Euclidean distance between the two vertices in cumulative graph dist. RS measures the goodness-of-fit of the “shape” of the overall GC skew to be partitioned into two segments corresponding the two replichores, by calculating the relative predominance of the spectral strength of the 1-Hz frequency component over other frequencies upon applying Fast Fourier Transform. dist measures the degree of bias in the leading and lagging strands, by calculating the Euclidean distance between the average GC skew in the two replichores. RS is generally correlated with dist, therefore combination of these two measures as GCSI should correctly represent both the shape of the graph and the degree of skew.

Using the measures dist and SR, GCSI was calculated for 304 bacterial genomes; 50 selected species are shown in Table 1 (see supplementary information for comprehensive listings). From the comprehensive list, nine genomes were further selected to illustrate the GC skew graphs plotted with 500 windows at various GCSI values (Fig. 2). As a control, GCSI was also calculated for 29 archaeal genomes, most of which showed no GC skew (Table 2). Because GCSI was normalized by the rounded maximum values of SR and dist, it ranged from 0 to 1. GCSI in bacterial genomes ranged from 0.006 for Gloeobacter violaceus to 0.815 for Clostridium perfringens (mean, 0.207; median, 0.145; SD, 0.173). The majority of archaeal genomes had GCSI <0.05, and the highest GCSI among archaeal genomes (0.122 of Halobacterium sp.) was low compared to those of bacterial genomes. GC skew was not clearly observable in species with GCSI <0.05, but it showed clear shift points when GCSI >0.10. Due to the limited number of iterations, normality test for the statistical assessment using shuffled genome sequence did not score well, but that using shuffled GC skew passed the test in all genome analyzed. The z-score was generally low and therefore not significant when GCSI <0.05 (especially <0.02), where the GCSI values may not be accurate. On the other hand, GCSI >0.05 scored extremely high z-scores, and therefore these values accurately depict the polarity of the genomes.

Table 1.

GCSI, spectral ratio RS, and the Euclidean distance between the two vertices in cumulative graph dist for randomly selected 50 bacterial chromosomes. Significance was calculated using 1) 1000 samples by shuffling GC skew windows, and 2) 100 samples by shuffling the entire nucleotide sequence of the genome while conserving the nucleotide composition, and the p-value from the normality test and the significance of the original GCSI value using the distribution of randomized samples was given as the z-score.

shuffled GC skew shuffled genome

species accession GCSI SR dist mean SD z-Score p-value (Lillefors) mean SD z-Score p-value (Lillefors)
Gloeobacter violaceus PCC 7421 NC_005125 0.006 2.006 7.103 0.006002 7.88E–05 1 8.08E–62 0.002587 0.000671 5 0.014
Synechocystis sp. PCC 6803 NC_000911 0.009 0.296 10.443 0.008784 8.10E–05 0 1.12E–68 0.005882 0.000706 4 0.000
Mycoplasma hyopneumoniae 232 NC_006360 0.019 0.149 22.387 0.018741 9.19E–05 0 3.39E–86 0.008964 0.002092 4 0.015
Synechococcus elongatus PCC 7942 NC_007604 0.024 35.953 24.632 0.020612 8.28E–05 35 8.91E–63 0.005043 0.000938 19 0.022
Shigella boydii Sb227 NC_007613 0.035 120.160 29.756 0.024878 7.99E–05 124 7.41E–67 0.009254 0.000518 49 0.000
Frankia alni ACN14a NC_008278 0.040 125.894 35.514 0.029676 7.46E–05 139 1.95E–54 0.005153 0.000263 132 0.006
Thiobacillus denitrificans ATCC 25259 NC_007404 0.042 161.970 34.606 0.028922 8.35E–05 160 2.43E–69 0.003939 0.000703 54 0.923
Tropheryma whipplei str. Twist NC_004572 0.048 9.110 56.698 0.047333 8.84E–05 7 1.78E–79 0.02598 0.000883 24 0.063
Geobacter sulfurreducens PCA NC_002939 0.054 167.963 47.796 0.039911 8.49E–05 163 1.80E–80 0.007165 0.000401 116 0.024
Rhodopseudomonas palustris BisB5 NC_007958 0.064 365.258 40.691 0.033991 8.07E–05 376 1.32E–66 0.011625 0.000239 220 0.000
Polaromonas sp. JS666 NC_007948 0.071 424.069 43.091 0.035995 8.13E–05 433 7.59E–58 0.00298 0.000621 109 0.003
Shigella flexneri 2a str. 2457T NC_004741 0.077 320.650 60.344 0.050368 8.16E–05 326 4.89E–71 0.008386 0.000448 153 0.000
Haemophilus influenzae 86–028NP NC_007146 0.084 177.860 82.588 0.068907 8.17E–05 180 2.15E–63 0.00523 0.001235 63 0.143
Mycoplasma genitalium G37 NC_000908 0.086 103.679 93.248 0.077794 9.01E–05 94 3.10E–78 0.018262 0.002466 27 0.007
Buchnera aphidicola str. APS (Acyrthosiphon pisum) NC_002528 0.090 84.815 99.584 0.083067 8.06E–05 86 1.40E–71 0.022281 0.002142 31 0.114
Helicobacter pylori HPAG1 NC_008086 0.097 182.961 97.720 0.081517 8.68E–05 174 1.75E–77 0.00802 0.001226 72 0.043
Escherichia coli K12 NC_000913 0.098 486.480 69.038 0.057613 8.13E–05 497 1.84E–69 0.004953 0.00069 134 0.000
Corynebacterium glutamicum ATCC 13032 NC_006958 0.104 321.871 92.134 0.076862 8.03E–05 333 1.69E–61 0.012113 0.000354 258 0.044
Helicobacter pylori J99 NC_000921 0.106 187.288 108.770 0.090726 8.31E–05 186 2.02E–66 0.018694 0.000701 124 0.008
Rhodospirillum rubrum ATCC 11170 NC_007643 0.113 763.008 59.247 0.049457 8.74E–05 726 4.72E–77 0.003081 0.000736 149 0.017
Helicobacter acinonychis str. Sheeba NC_008229 0.119 239.480 118.460 0.098801 8.17E–05 243 1.12E–62 0.007669 0.001377 80 0.477
Escherichia coli O157:H7 str. Sakai NC_002695 0.121 662.307 79.123 0.06602 8.36E–05 658 3.89E–68 0.008232 0.000316 356 0.068
Dehalococcoides sp. CBDB1 NC_007356 0.127 490.612 102.952 0.085878 8.61E–05 473 1.69E–72 0.010229 0.0009 129 0.144
Neisseria meningitidis Z2491 NC_003116 0.138 484.060 117.689 0.098156 8.08E–05 498 7.08E–66 0.004362 0.000929 144 0.129
Neisseria gonorrhoeae FA 1090 NC_002946 0.142 508.853 119.737 0.099867 8.29E–05 510 2.72E–60 0.006794 0.001039 130 0.122
Yersinia pestis KIM NC_004088 0.148 785.937 99.533 0.083032 8.47E–05 772 4.61E–63 0.017378 0.00027 485 0.002
Rickettsia typhi str. Wilmington NC_006142 0.161 437.431 149.404 0.124586 8.32E–05 437 9.13E–71 0.048368 0.000704 159 0.533
Salmonella typhimurium LT2 NC_003197 0.167 1107.149 89.390 0.074569 7.57E–05 1217 4.49E–65 0.002732 0.000705 232 0.001
Yersinia pseudotuberculosis IP 32953 NC_006155 0.174 951.989 113.617 0.094763 8.49E–05 933 8.63E–77 0.017276 0.000232 676 0.054
Dechloromonas aromatica RCB NC_007298 0.199 1366.887 101.487 0.084655 8.43E–05 1350 3.78E–73 0.002758 0.000606 322 0.260
Chromohalobacter salexigens DSM 3043 NC_007963 0.220 1568.376 106.845 0.089121 8.36E–05 1561 1.67E–69 0.02062 0.000186 1070 0.000
Shewanella denitrificans OS217 NC_007954 0.231 1611.284 116.055 0.096797 8.05E–05 1666 3.01E–60 0.009546 0.000429 515 0.005
Bacteroides fragilis YCH46 NC_006347 0.253 1464.908 157.144 0.13104 8.95E–05 1362 3.16E–75 0.003523 0.000726 343 0.046
Chlamydophila pneumoniae AR39 NC_002179 0.256 1169.869 189.710 0.158179 8.84E–05 1101 3.49E–72 0.007879 0.00137 180 0.311
Methylobacillus flagellatus KT NC_007947 0.267 1921.680 127.706 0.106502 7.90E–05 2026 5.99E–66 0.005942 0.000789 330 0.057
Bacillus licheniformis ATCC 14580 NC_006270 0.271 1879.614 137.460 0.114632 8.87E–05 1764 3.54E–88 0.003241 0.000753 355 0.299
Desulfotalea psychrophila LSv54 NC_006138 0.298 2118.652 145.143 0.12104 8.74E–05 2018 1.04E–70 0.034761 0.000188 1393 0.002
Bacillus subtilis subsp. subtilis str. 168 NC_000964 0.312 2041.257 169.785 0.141571 8.43E–05 2017 1.59E–71 0.008504 0.000492 615 0.067
Streptococcus thermophilus LMG 18311 NC_006448 0.319 1827.666 200.247 0.166958 8.66E–05 1758 6.60E–73 0.015441 0.000843 360 0.245
Lactococcus lactis subsp. lactis Il1403 NC_002662 0.329 1753.562 218.954 0.182543 8.30E–05 1759 1.10E–73 0.022 0.000455 673 0.000
Streptococcus pyogenes SSI-1 NC_004606 0.332 1881.246 210.648 0.175623 8.53E–05 1836 5.66E–74 0.040869 0.000363 802 0.269
Streptococcus mutans UA159 NC_004350 0.378 2260.651 226.932 0.189192 8.33E–05 2259 6.68E–72 0.023889 0.000534 662 0.000
Bacillus halodurans C-125 NC_002570 0.406 2702.537 216.866 0.180803 7.92E–05 2841 1.12E–62 0.028966 0.000211 1788 0.643
Buchnera aphidicola str. Bp (Baizongia pistaciae) NC_004545 0.409 1415.720 348.910 0.290845 8.67E–05 1359 3.03E–70 0.011699 0.002443 162 0.005
Staphylococcus aureus subsp. aureus COL NC_002951 0.420 2398.078 263.652 0.219797 8.72E–05 2290 2.05E–70 0.02288 0.000463 857 0.124
Lactobacillus johnsonii NCC 533 NC_005362 0.438 2512.013 274.215 0.228599 8.63E–05 2425 8.56E–71 0.038523 0.000349 1142 0.001
Ehrlichia ruminantium str. Welgevonden NC_005295 0.579 2583.741 436.829 0.364108 7.99E–05 2694 6.11E–61 0.047406 0.000605 879 0.837
Lactobacillus plantarum WCFS1 NC_004567 0.615 5130.119 225.397 0.187914 8.59E–05 4977 4.07E–76 0.008182 0.000715 848 0.001
Bacillus anthracis str. Sterne NC_005945 0.669 4584.878 344.506 0.287173 8.28E–05 4611 1.26E–62 0.020516 0.000228 2840 0.271
Clostridium perfringens str. 13 NC_003366 0.815 4092.849 568.720 0.474015 7.93E–05 4301 1.73E–62 0.108625 0.000249 2832 0.153

Figure 2.

Figure 2.

GC skew graphs plotted with 500 windows for nine bacteria at different levels of GCSI. GC skew is not observable for the first two species at GCSI <0.05, and becomes evident at GCSI >0.08. At GCSI >0.1, graphs increase their skewness and the shift points and two replichores can be clearly discerned from the graph. Note that the range of Y-axis extends as GCSI values increase. Overall, GCSI correlates with and correctly captures the degree of skew.

Table 2.

GCSI, spectral ratio RS, and the Euclidean distance between the two vertices in cumulative graph dist for 29 archaeal chromosomes. See Table 1 legend for the details of the test of significance.

shuffled GC skew shuffled genome

species accession GCSI SR dist mean SD z-Score p-value (Lillefors) mean SD z-Score p-value (Lillefors)
Thermotoga maritima MSB8 NC_000853 0.079 55.630 89.074 0.07431 8.28E–05 55 7.84E–73 0.053342 0.000293 87 0.6718442
Aeropyrum pernix K1 NC_000854 0.040 3.985 47.125 0.039355 8.41E–05 2 9.80E–70 0.024235 0.000362 42 0.0041011
Pyrococcus abyssi GE5 NC_000868 0.045 26.443 51.771 0.043226 8.29E–05 25 4.59E–69 0.012958 0.000897 36 0.172579
Methanocaldococcus jannaschii DSM 2661 NC_000909 0.087 14.536 102.413 0.085427 8.30E–05 13 4.54E–70 0.039171 0.000559 84 0.5234979
Methanothermobacter thermautotrophicus str. Delta H NC_000916 0.045 67.648 47.539 0.039698 7.85E–05 70 8.45E–61 0.007545 0.001076 35 0.0004862
Archaeoglobus fulgidus DSM 4304 NC_000917 0.020 3.695 23.137 0.019366 8.57E–05 2 1.63E–72 0.012813 0.000474 14 0.0639122
Pyrococcus horikoshii OT3 NC_000961 0.105 75.244 117.845 0.098287 8.08E–05 76 1.23E–64 0.043455 0.000316 193 0.5840531
Thermoplasma acidophilum DSM 1728 NC_002578 0.046 43.474 50.894 0.042499 8.71E–05 40 2.08E–69 0.014096 0.000693 46 0.0003436
Halobacterium sp. NRC-1 NC_002607 0.122 617.687 84.760 0.070717 8.43E–05 609 1.26E–70 0.006544 0.000784 147 0.3059486
Thermoplasma volcanium GSS1 NC_002689 0.044 39.413 49.277 0.041153 9.40E–05 33 2.58E–83 0.010706 0.001065 31 0.0006178
Sulfolobus solfataricus P2 NC_002754 0.042 17.321 48.204 0.040254 8.11E–05 16 5.41E–62 0.009386 0.000742 43 0.0113624
Sulfolobus tokodaii str. 7 NC_003106 0.033 1.862 39.909 0.033345 8.61E–05 0 2.92E–68 0.023109 0.000452 22 0.0383977
Pyrobaculum aerophilum str. IM2 NC_003364 0.038 6.535 44.690 0.037329 8.94E–05 5 3.60E–75 0.035224 0.000278 9 0.1593346
Pyrococcus furiosus DSM 3638 NC_003413 0.025 0.167 29.587 0.024742 8.62E–05 0 1.43E–69 0.005934 0.00129 14 0.3798953
Methanopyrus kandleri AV19 NC_003551 0.023 9.398 26.361 0.022049 8.20E–05 8 1.48E–70 0.01687 0.000478 12 0.0002658
Methanosarcina acetivorans C2A NC_003552 0.012 2.813 13.871 0.011641 7.88E–05 1 7.19E–61 0.003945 0.000539 14 0.1568932
Methanosarcina mazei Go1 NC_003901 0.015 2.817 17.149 0.014374 8.09E–05 1 4.87E–64 0.004366 0.000714 14 0.0536714
Nanoarchaeum equitans Kin4-M NC_005213 0.034 3.562 40.488 0.033818 7.74E–05 2 1.39E–66 0.012129 0.002861 7 0.0388642
Methanococcus maripaludis S2 NC_005791 0.041 21.214 46.718 0.039014 7.67E–05 21 4.53E–55 0.01073 0.001159 25 0.0074146
Picrophilus torridus DSM 9790 NC_005877 0.032 2.862 37.785 0.031568 7.96E–05 1 6.30E–68 0.027789 0.000466 8 0.1271154
Haloarcula marismortui ATCC 43049 NC_006396 0.007 5.473 8.170 0.006896 8.40E–05 4 4.38E–62 0.003083 0.000636 6 0.0262528
Haloarcula marismortui ATCC 43049 NC_006397 0.027 8.093 31.154 0.026042 7.79E–05 7 7.89E–64 0.017283 0.002185 4 5.38E–05
Thermococcus kodakarensis KOD1 NC_006624 0.023 12.060 26.681 0.022315 7.73E–05 11 1.29E–58 0.007225 0.000882 18 0.0146136
Sulfolobus acidocaldarius DSM 639 NC_007181 0.036 11.514 41.648 0.034791 8.63E–05 10 9.33E–75 0.006642 0.001216 23 0.2043022
Methanosarcina barkeri str. fusaro NC_007355 0.014 11.210 15.497 0.012995 7.86E–05 10 6.92E–63 0.013765 0.000319 0 8.15E–05
Natronomonas pharaonis DSM 2160 NC_007426 0.027 96.855 22.716 0.019012 8.05E–05 99 3.44E–67 0.004615 0.000762 29 1.68E–05
Methanosphaera stadtmanae DSM 3091 NC_007681 0.087 85.030 96.236 0.08028 8.38E–05 83 6.57E–71 0.023236 0.000748 85 0.2877452
Methanospirillum hungatei JF-1 NC_007796 0.027 17.105 30.715 0.025674 7.94E–05 16 3.41E–72 0.014578 0.000342 36 0.0096521
Methanococcoides burtonii DSM 6242 NC_007955 0.044 44.608 48.355 0.040381 8.44E–05 43 1.67E–66 0.029311 0.000319 46 0.0895566

As can be seen from the GC skew graphs in Figure 2, the degree of skew correlates with GCSI. No skew was observable for G. violaceus and Synechococcus elongatus PCC 7942, with GCSI values of 0.006 and 0.023, respectively, but a gradual rise from negative values to positive values was observed for Synechococcus sp. CC9605, with a GCSI of 0.065, although the skew was not well defined. GC skew became visible at a GCSI of 0.098 in Escherichia coli K12, and the clarity was increased in correlation with the GCSI values for scores greater than 1, as represented by the increasing range of the y-axis from ±0.15 at GCSI values around 1 to ±0.4 at a GCSI of 0.815.

Discussion

The nucleotide sequence of a genome is structured and controlled by a myriad of selection pressures, especially in subgenomic regions, as typified by the fact that coding regions are shaped by the essential order and usage of codons. In addition to such requirements in the subgenomic regions, circular bacterial chromosomes experience genome-wide selection through the replication process. The chiral nucleotide composition in the two replication arms is significant; however, with regard to the evolutionary aspects of replicational selection on bacterial chromosomes, no useful method to quantify the degree of genomic compositional asymmetry has been proposed, unlike the wealth of codon bias measures (Suzuki et al. 2005). This lack of indices for genomic compositional skews was likely due to the difficulty of mathematical formulation and detection of the skewing shape of GC skew graphs. To distinguish the degree of skew, we utilized FFT to observe the predominance of the 1-Hz frequency component, which corresponds to the replicational selection on the two replichores, over other frequency components. Combined with the Euclidean distance between the two vertices in cumulative skew graphs, the formulated GCSI captured the strength of GC skew in bacterial chromosomes, as shown by the above results. GCSI scores are diverse even within bacterial genomes with circular chromosomes, ranging from a number of genomes with extremely low values therefore implying the lack of observable GC skew in the genome, to groups of genomes with clear skews as can be seen in Bacilli.

The majority of the archaeal genomes had GCSI <0.05, at which point no noticeable skew is observed even in bacterial genomes. This is also confirmed by the z-score in the statistical test using randomized data, with low z-scores (therefore implying less significance) when GCSI is less than 0.05. Thus, 0.05 can be employed as a threshold value to determine whether GC skew is present in a genome and therefore whether replicational selection is acting on the organism. Because the GCSI values do not show a Gaussian distribution, however, it should be noted that the indices are not necessarily proportionate with each other. Therefore, GCSI values should not be compared in terms of ratios but in terms of their rank orders. For the direct comparison of quantitative degrees of skew calculated as the ratio of two values, the use of Euclidean distance may be more suitable. However, significant Euclidean distance between the two vertices of cumulative skew may not always result from the polarity exhibited by the GC skew graph; it could also result from local regions of highly biased nucleotide content. Therefore, to ascertain that the skews are controlled by replicational selection, genomes used for such analyses should be selected beforehand using GCSI or SR at sufficiently high thresholds (e.g. 0.07 for GCSI and 200 for SR, also noting the z-scores).

GCSI would be a useful index for the estimation of confidence levels for bioinformatics analyses using genomic compositional skews. Predictions of replication origin and terminus by the observation of shift points (i.e. vertices) of cumulative skew diagrams become erroneous when the GC skew is not well defined. However, the confidence level can be easily estimated by taking into account of the magnitude of the GCSI. In this work we have only described the index for GC skew, although the same method is applicable to purine and keto excesses or any other genomic compositional skews, given that the selection is on the two replichores. Similarly, for comparative studies of genomic features related to evolutionary pressures and replication machinery, GCSI can also be used as a measure of replicational selection.

Suppliment Material

Supplement1.xls (99KB, xls)

Acknowledgments

We thank the members of MGSP at the Institute for Advanced Biosciences, Keio University, especially Nozomu Yachie and Ayako Kinoshita, for critical discussions. This research was supported by the Japan Society for the Promotion of Science (JSPS).

Footnotes

Please note that this article may not be used for commercial purposes. For further information please refer to the copyright statement at http://www.la-press.com/copyright.htm

References

  1. Arakawa K, Mori K, Ikeda K, et al. G-language Genome Analysis Environment: a workbench for nucleotide sequence data mining. Bioinformatics. 2003;19:305–306. doi: 10.1093/bioinformatics/19.2.305. [DOI] [PubMed] [Google Scholar]
  2. Arakawa K, Saito R, Tomita M. Noise-reduction filtering for accurate detection of replication termini in bacterial genomes. FEBS Lett. 2007;581:253–258. doi: 10.1016/j.febslet.2006.12.021. [DOI] [PubMed] [Google Scholar]
  3. Arakawa K, Tomita M. G-language System as a platform for large-scale analysis of high-throughput omics data. Journal of Pesticide Science. 2006;31:282–288. [Google Scholar]
  4. Daubin V, Perriere G. G + C3 structuring along the genome: a common feature in prokaryotes. Mol. Biol. Evol. 2003;20:471–483. doi: 10.1093/molbev/msg022. [DOI] [PubMed] [Google Scholar]
  5. Dodin G, Vandergheynst P, Levoir P, et al. Fourier and wavelet transform analysis, a tool for visualizing regular patterns in DNA sequences. J. Theor. Biol. 2000;206:323–326. doi: 10.1006/jtbi.2000.2127. [DOI] [PubMed] [Google Scholar]
  6. Frank AC, Lobry JR. Asymmetric substitution patterns: a review of possible underlying mutational or selective mechanisms. Gene. 1999;238:65–77. doi: 10.1016/s0378-1119(99)00297-8. [DOI] [PubMed] [Google Scholar]
  7. Frank AC, Lobry JR. Oriloc: prediction of replication boundaries in unannotated bacterial chromosomes. Bioinformatics. 2000;16:560–561. doi: 10.1093/bioinformatics/16.6.560. [DOI] [PubMed] [Google Scholar]
  8. Freeman JM, Plasterer TN, Smith TF, et al. Patterns of Genome Organization in Bacteria. Science. 1998;279:1827a. [Google Scholar]
  9. Fujimori S, Washio T, Tomita M. GC-compositional strand bias around transcription start sites in plants and fungi. BMC Genomics. 2005;6:26. doi: 10.1186/1471-2164-6-26. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Grabowski B, Kelman Z. Archeal DNA replication: eukaryal proteins in a bacterial context. Annu. Rev. Microbiol. 2003;57:487–516. doi: 10.1146/annurev.micro.57.030502.090709. [DOI] [PubMed] [Google Scholar]
  11. Grigoriev A. Analyzing genomes with cumulative skew diagrams. Nucleic Acids Res. 1998;26:2286–2290. doi: 10.1093/nar/26.10.2286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hendrickson H, Lawrence JG. Selection for chromosome architecture in bacteria. J. Mol. Evol. 2006;62:615–629. doi: 10.1007/s00239-005-0192-2. [DOI] [PubMed] [Google Scholar]
  13. Katoh K, Misawa K, Kuma K, et al. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–3066. doi: 10.1093/nar/gkf436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Krishnan NM, Seligmann H, Raina SZ, et al. Detecting gradients of asymmetry in site-specific substitutions in mitochondrial genomes. DNA Cell Biol. 2004;23:707–714. doi: 10.1089/1044549042476901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lobry JR. Asymmetric substitution patterns in the two DNA strands of bacteria. Mol. Biol. Evol. 1996;13:660–665. doi: 10.1093/oxfordjournals.molbev.a025626. [DOI] [PubMed] [Google Scholar]
  16. Lobry JR, Louarn JM. Polarisation of prokaryotic chromosomes. Curr. Opin. Microbiol. 2003;6:101–108. doi: 10.1016/s1369-5274(03)00024-9. [DOI] [PubMed] [Google Scholar]
  17. Lobry JR, Sueoka N.2002Asymmetric directional mutation pressures in bacteria Genome Biol 3RESEARCH0058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lopez P, Philippe H, Myllykallio H, et al. Identification of putative chromosomal origins of replication in Archaea. Mol. Microbiol. 1999;32:883–886. doi: 10.1046/j.1365-2958.1999.01370.x. [DOI] [PubMed] [Google Scholar]
  19. McLean MJ, Wolfe KH, Devine KM. Base composition skews, replication orientation, and gene orientation in 12 prokaryote genomes. J. Mol. Evol. 1998;47:691–696. doi: 10.1007/pl00006428. [DOI] [PubMed] [Google Scholar]
  20. Myllykallio H, Lopez P, Lopez-Garcia P, et al. Bacterial mode of replication with eukaryotic-like machinery in a hyperthermophilic archaeon. Science. 2000;288:2212–2215. doi: 10.1126/science.288.5474.2212. [DOI] [PubMed] [Google Scholar]
  21. Rocha EP. Order and disorder in bacterial genomes. Curr. Opin. Microbiol. 2004a;7:519–527. doi: 10.1016/j.mib.2004.08.006. [DOI] [PubMed] [Google Scholar]
  22. Rocha EP. The replication-related organization of bacterial genomes. Microbiology. 2004b;150:1609–1627. doi: 10.1099/mic.0.26974-0. [DOI] [PubMed] [Google Scholar]
  23. Seligmann H, Krishnan NM, Rao BJ. Possible multiple origins of replication in primate mitochondria: Alternative role of tRNA sequences. J. Theor. Biol. 2006;241:321–332. doi: 10.1016/j.jtbi.2005.11.035. [DOI] [PubMed] [Google Scholar]
  24. Suzuki H, Saito R, Tomita M. A problem in multivariate analysis of codon usage data and a possible solution. FEBS Lett. 2005;579:6499–6504. doi: 10.1016/j.febslet.2005.10.032. [DOI] [PubMed] [Google Scholar]
  25. Worning P, Jensen LJ, Hallin PF, et al. Origin of replication in circular prokaryotic chromosomes. Environ. Microbiol. 2006;8:353–361. doi: 10.1111/j.1462-2920.2005.00917.x. [DOI] [PubMed] [Google Scholar]
  26. Yin C, Yau SS. A Fourier characteristic of coding sequences: origins and a non-Fourier approximation. J. Comput. Biol. 2005;12:1153–1165. doi: 10.1089/cmb.2005.12.1153. [DOI] [PubMed] [Google Scholar]
  27. Zawilak A, Cebrat S, Mackiewicz P, et al. Identification of a putative chromosomal replication origin from Helicobacter pylori and its interaction with the initiator protein DnaA. Nucleic Acids Res. 2001;29:2251–2259. doi: 10.1093/nar/29.11.2251. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplement1.xls (99KB, xls)

Articles from Evolutionary Bioinformatics Online are provided here courtesy of SAGE Publications

RESOURCES