Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1985 Oct;22(4):505–509. doi: 10.1128/jcm.22.4.505-509.1985

Virus-specific polymeric immunoglobulin A antibodies in serum from patients with rubella, measles, varicella, and herpes zoster virus infections.

A Negro Ponzi, C Merlino, A Angeretti, R Penna
PMCID: PMC268455  PMID: 3001129

Abstract

More than 85% of the immunoglobulin A (IgA) antibodies in normal adult serum are monomeric (m-IgA). By contrast, virus-specific IgA is mainly polymeric (p-IgA) in sera from patients with rubella, measles, and varicella. Specific m-IgA antibodies only reach quantitative significance in late convalescence. In patients with herpes zoster, on the other hand, a varying response was observed: in three of six sera, specific IgA was absent or at a very low titer, whereas in the remaining three cases, a high titer of both p-IgA and m-IgA was noted. These results suggest that in the initial response to rubella, measles, and varicella-zoster viruses, specific IgA first appears as p-IgA and only later becomes, or is replaced by, m-IgA.

Full text

PDF
505

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arvin A. M., Koropchak C. M. Immunoglobulins M and G to varicella-zoster virus measured by solid-phase radioimmunoassay: antibody responses to varicella and herpes zoster infections. J Clin Microbiol. 1980 Sep;12(3):367–374. doi: 10.1128/jcm.12.3.367-374.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bürgin-Wolff A., Hernandez R., Just M. Separation of rubella IgM, IgA, and IgG antibodies by gel filtration on agarose. Lancet. 1971 Dec 11;2(7737):1278–1280. doi: 10.1016/s0140-6736(71)90600-3. [DOI] [PubMed] [Google Scholar]
  3. Delacroix D. L., Dehennin J. P., Vaerman J. P. Influence of molecular size of IgA on its immunoassay by various techniques. II. Solid-phase radioimmunoassays. J Immunol Methods. 1982;48(3):327–337. doi: 10.1016/0022-1759(82)90333-7. [DOI] [PubMed] [Google Scholar]
  4. Delacroix D. L., Liroux E., Vaerman J. P. High proportion of polymeric IgA in young infants' sera and independence between IgA-size and IgA-subclass distributions. J Clin Immunol. 1983 Jan;3(1):51–56. doi: 10.1007/BF00919138. [DOI] [PubMed] [Google Scholar]
  5. Delacroix D. L., Vaerman J. P. Influence of molecular size of IgA on its immunoassay by various techniques. III. Immunonephelometry. J Immunol Methods. 1982;51(1):49–55. doi: 10.1016/0022-1759(82)90381-7. [DOI] [PubMed] [Google Scholar]
  6. Forghani B., Myoraku C. K., Dupuis K. W., Schmidt N. J. Antibody class capture assays for varicella-zoster virus. J Clin Microbiol. 1984 May;19(5):606–609. doi: 10.1128/jcm.19.5.606-609.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Halonen P., Meurman O., Matikainen M. T., Torfason E., Bennich H. IgA antibody response in acute rubella determined by solid-phase radioimmunoassay. J Hyg (Lond) 1979 Aug;83(1):69–75. doi: 10.1017/s0022172400025833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hornsleth A., Leerhoy J., Grauballe P., Spanggaard H. Persistence of rubellavirus-specific immunoglobulin M and immunoglobulin A antibodies: investigation of successive serum samples with lowered immunoglobulin G concentration. Infect Immun. 1975 Apr;11(4):804–808. doi: 10.1128/iai.11.4.804-808.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Inouye S., Kono R., Takeuchi Y. Oligomeric immunoglobulin A antibody response to rubella virus infection. J Clin Microbiol. 1978 Jul;8(1):1–6. doi: 10.1128/jcm.8.1.1-6.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lehtonen O. P., Eerola E. The effect of different antibody affinities on ELISA absorbance and titer. J Immunol Methods. 1982 Oct 29;54(2):233–240. doi: 10.1016/0022-1759(82)90064-3. [DOI] [PubMed] [Google Scholar]
  11. Mancini G., Carbonara A. O., Heremans J. F. Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochemistry. 1965 Sep;2(3):235–254. doi: 10.1016/0019-2791(65)90004-2. [DOI] [PubMed] [Google Scholar]
  12. Meurman O. Detection of antiviral IgM antibodies and its problems--a review. Curr Top Microbiol Immunol. 1983;104:101–131. doi: 10.1007/978-3-642-68949-9_7. [DOI] [PubMed] [Google Scholar]
  13. Okuno T., Kondelis N. Evaluation of dithiothreitol (DTT) for inactivation of IgM antibodies. J Clin Pathol. 1978 Dec;31(12):1152–1155. doi: 10.1136/jcp.31.12.1152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Schmidt N. J., Gallo D. Class-specific antibody responses to early and late antigens of varicella and herpes simplex viruses. J Med Virol. 1984;13(1):1–12. doi: 10.1002/jmv.1890130102. [DOI] [PubMed] [Google Scholar]
  15. Wittek A. E., Arvin A. M., Koropchak C. M. Serum immunoglobulin A antibody to varicella-zoster virus in subjects with primary varicella and herpes zoster infections and in immune subjects. J Clin Microbiol. 1983 Nov;18(5):1146–1149. doi: 10.1128/jcm.18.5.1146-1149.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES