Abstract
A solid-phase radioimmunoassay (RIA) was developed for the detection of yellow fever (YF) virus in infected cell culture supernatant fluid and clinical samples. The test employed a flavivirus group-reactive monoclonal antibody attached to a polystyrene bead support and a radiolabeled type-specific antibody probe in a simultaneous sandwich RIA format. Optimal assay conditions specified a 16-h incubation at high temperature (45 degrees C). Monoclonal antibody to tetanus toxoid was added to the radiolabeled probe to inhibit nonspecific binding. The sensitivity of the assay for cell culture-propagated virus was 2.0 log10 50% mosquito infectious doses per 100 microliters or 100 pg of gradient-purified virion protein per 100 microliters. Specificity, assessed with human sera from 512 patients with liver diseases other than YF, including acute viral hepatitis, showed a false-positive rate of 0.0 to 0.6%. Sera from experimentally infected rhesus macaques containing greater than 3.0 log10 units/100 microliter of YF virus were positive by RIA. Sera and liver tissue from human patients were found to be positive.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brandt W. E., Cardiff R. D., Russell P. K. Dengue virions and antigens in brain and serum of infected mice. J Virol. 1970 Oct;6(4):500–506. doi: 10.1128/jvi.6.4.500-506.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CHANOCK R. M., SABIN A. B. The hemagglutinin of St. Louis encephalitis virus. II. Physico-chemical properties and nature of its reaction with erythrocytes. J Immunol. 1953 Mar;70(3):286–301. [PubMed] [Google Scholar]
- CLARKE D. H. FURTHER STUDIES ON ANTIGENIC RELATIONSHIPS AMONG THE VIRUSES OF THE GROUP B TICK-BORNE COMPLEX. Bull World Health Organ. 1964;31:45–56. [PMC free article] [PubMed] [Google Scholar]
- Ey P. L., Prowse S. J., Jenkin C. R. Isolation of pure IgG1, IgG2a and IgG2b immunoglobulins from mouse serum using protein A-sepharose. Immunochemistry. 1978 Jul;15(7):429–436. doi: 10.1016/0161-5890(78)90070-6. [DOI] [PubMed] [Google Scholar]
- Fraker P. J., Speck J. C., Jr Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphrenylglycoluril. Biochem Biophys Res Commun. 1978 Feb 28;80(4):849–857. doi: 10.1016/0006-291x(78)91322-0. [DOI] [PubMed] [Google Scholar]
- Heinz F. X., Mandl C., Berger R., Tuma W., Kunz C. Antibody-induced conformational changes result in enhanced avidity of antibodies to different antigenic sites on the tick-borne encephalitis virus glycoprotein. Virology. 1984 Feb;133(1):25–34. doi: 10.1016/0042-6822(84)90422-7. [DOI] [PubMed] [Google Scholar]
- Henchal E. A., McCown J. M., Burke D. S., Seguin M. C., Brandt W. E. Epitopic analysis of antigenic determinants on the surface of dengue-2 virions using monoclonal antibodies. Am J Trop Med Hyg. 1985 Jan;34(1):162–169. doi: 10.4269/ajtmh.1985.34.162. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Monath T. P., Kinney R. M., Schlesinger J. J., Brandriss M. W., Brès P. Ontogeny of yellow fever 17D vaccine: RNA oligonucleotide fingerprint and monoclonal antibody analyses of vaccines produced world-wide. J Gen Virol. 1983 Mar;64(Pt 3):627–637. doi: 10.1099/0022-1317-64-3-627. [DOI] [PubMed] [Google Scholar]
- Monath T. P., Nystrom R. R. Detection of yellow fever virus in serum by enzyme immunoassay. Am J Trop Med Hyg. 1984 Jan;33(1):151–157. doi: 10.4269/ajtmh.1984.33.151. [DOI] [PubMed] [Google Scholar]
- Monath T. P., Schlesinger J. J., Brandriss M. W., Cropp C. B., Prange W. C. Yellow fever monoclonal antibodies: type-specific and cross-reactive determinants identified by immunofluorescence. Am J Trop Med Hyg. 1984 Jul;33(4):695–698. doi: 10.4269/ajtmh.1984.33.695. [DOI] [PubMed] [Google Scholar]
- Schlesinger J. J., Brandriss M. W., Monath T. P. Monoclonal antibodies distinguish between wild and vaccine strains of yellow fever virus by neutralization, hemagglutination inhibition, and immune precipitation of the virus envelope protein. Virology. 1983 Feb;125(1):8–17. doi: 10.1016/0042-6822(83)90059-4. [DOI] [PubMed] [Google Scholar]
- Schlesinger J. J., Walsh E. E., Brandriss M. W. Analysis of 17D yellow fever virus envelope protein epitopes using monoclonal antibodies. J Gen Virol. 1984 Oct;65(Pt 10):1637–1644. doi: 10.1099/0022-1317-65-10-1637. [DOI] [PubMed] [Google Scholar]
- Shapiro D., Brandt W. E., Cardiff R. D., Russell P. K. The proteins of Japanese encephalitis virus. Virology. 1971 Apr;44(1):108–124. doi: 10.1016/0042-6822(71)90158-9. [DOI] [PubMed] [Google Scholar]
- WHEELOCK E. F., SIBLEY W. A. CIRCULATING VIRUS, INTERFERON AND ANTIBODY AFTER VACCINATION WITH THE 17-D STRAIN OF YELLOW-FEVER VIRUS. N Engl J Med. 1965 Jul 22;273:194–198. doi: 10.1056/NEJM196507222730404. [DOI] [PubMed] [Google Scholar]
- Wands J. R., Carlson R. I., Schoemaker H., Isselbacher K. J., Zurawski V. R., Jr Immunodiagnosis of hepatitis B with high-affinity IgM monoclonal antibodies. Proc Natl Acad Sci U S A. 1981 Feb;78(2):1214–1218. doi: 10.1073/pnas.78.2.1214. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woodall J. P. Summary of a symposium on yellow fever. J Infect Dis. 1981 Jul;144(1):87–91. doi: 10.1093/infdis/144.1.87. [DOI] [PubMed] [Google Scholar]
