Abstract
Group A streptococci were tested for proteinase production and for the possible relationship of this production to the generation of bacteriocinlike inhibitor activity. Of 126 strains tested, 83% were positive for proteinase, and a similar distribution was found among strains isolated in association with rheumatic fever (89%) and nephritis (94%) and from uncomplicated acute infections (78%). Although application of an inhibitor production (P) typing scheme demonstrated a variety of P types, all of the proteinase-positive strains produced inhibitory activity and over 65% of these strains were P type 204. It was shown that hematin was responsible for this P type 204 activity and that it was produced only by actively proteolytic strains when grown on a hemoglobin-containing medium. Conditions optimizing proteinase production (anaerobic incubation at 37 degrees C on a test medium prepared from Columbia agar base [GIBCO Laboratories, Grand Island, N.Y.]) increased P type 204 activity. Interference with proteinase activity either by growth of the cultures at an alkaline pH or by incorporation of sub-growth inhibitory concentrations of either iodoacetic acid or lincomycin into the medium prevented production of P type 204 activity. Whether significant conversion of hemoglobin to hematin occurs in vivo and the possible implications of this conversion with regard to the pathogenesis of group A streptococcal infections remain to be determined.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akao T., Akao T., Kobashi K., Lai C. Y. The role of protease in streptolysin S formation. Arch Biochem Biophys. 1983 Jun;223(2):556–561. doi: 10.1016/0003-9861(83)90620-3. [DOI] [PubMed] [Google Scholar]
- DEIBEL R. H. HYDROLYSIS OF PROTEINS AND NUCLEIC ACIDS BY LANCEFIELD GROUP A AND OTHER STREPTOCOCCI. J Bacteriol. 1963 Dec;86:1270–1274. doi: 10.1128/jb.86.6.1270-1274.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ELLIOTT S. D. The crystallization and serological differentiation of a streptococcal proteinase and its precursor. J Exp Med. 1950 Sep;92(3):201–218. doi: 10.1084/jem.92.3.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FOX E. N., STEVENSON D. Effects of trypsin on the permeability of streptococci. J Bacteriol. 1960 Oct;80:513–521. doi: 10.1128/jb.80.4.513-521.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerlach D., Knöll H., Köhler W., Ozegowski J. H., Hríbalova V. Isolation and characterization of erythrogenic toxins. V. Communication: identity of erythrogenic toxin type B and streptococcal proteinase precursor. Zentralbl Bakteriol Mikrobiol Hyg A. 1983 Sep;255(2-3):221–233. [PubMed] [Google Scholar]
- Johnson D. W., Tagg J. R., Wannamaker L. W. Production of a bacteriocine-like substance by group-A streptococci of M-type 4 and T-pattern 4. J Med Microbiol. 1979 Nov;12(4):413–427. doi: 10.1099/00222615-12-4-413. [DOI] [PubMed] [Google Scholar]
- KELLNER A., ROBERTSON T. Myocardial necrosis produced in animals by means of crystalline streptococcal proteinase. J Exp Med. 1954 May 1;99(5):495–503. doi: 10.1084/jem.99.5.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laughon B. E., Syed S. A., Loesche W. J. Rapid identification of Bacteroides gingivalis. J Clin Microbiol. 1982 Feb;15(2):345–346. doi: 10.1128/jcm.15.2.345-346.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Straus D. C., Mattingly S. J., Milligan T. W., Doran T. I., Nealon T. J. Protease production by clinical isolates of type III group B streptococci. J Clin Microbiol. 1980 Sep;12(3):421–423. doi: 10.1128/jcm.12.3.421-423.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Straus D. C. Protease production by Streptococcus sanguis associated with subacute bacterial endocarditis. Infect Immun. 1982 Dec;38(3):1037–1045. doi: 10.1128/iai.38.3.1037-1045.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tagg J. R., Bannister L. V. "Fingerprinting" beta-haemolytic streptococci by their production of and sensitivity to bacteriocine-like inhibitors. J Med Microbiol. 1979 Nov;12(4):397–411. doi: 10.1099/00222615-12-4-397. [DOI] [PubMed] [Google Scholar]
- Tagg J. R. Production of bacteriocin-like inhibitors by group A streptococci of nephritogenic M types. J Clin Microbiol. 1984 Jun;19(6):884–887. doi: 10.1128/jcm.19.6.884-887.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tagg J. R., Wong H. K. Inhibitor production by group-G streptococci of human and of animal origin. J Med Microbiol. 1983 Nov;16(4):409–415. doi: 10.1099/00222615-16-4-409. [DOI] [PubMed] [Google Scholar]
- Takazoe I., Nakamura T., Okuda K. Colonization of the subgingival area by Bacteroides gingivalis. J Dent Res. 1984 Mar;63(3):422–426. doi: 10.1177/00220345840630031201. [DOI] [PubMed] [Google Scholar]
- Travis J., Salvesen G. S. Human plasma proteinase inhibitors. Annu Rev Biochem. 1983;52:655–709. doi: 10.1146/annurev.bi.52.070183.003255. [DOI] [PubMed] [Google Scholar]
- VAN HEYNINGEN W. E. The antibacterial activity of haematin. J Gen Microbiol. 1951 Oct;5(4):758–765. doi: 10.1099/00221287-5-4-758. [DOI] [PubMed] [Google Scholar]
- Varani J., Johnson K., Kaplan J. Development of a solid-phase assay for measurement of proteolytic enzyme activity. Anal Biochem. 1980 Sep 15;107(2):377–384. doi: 10.1016/0003-2697(80)90399-1. [DOI] [PubMed] [Google Scholar]
- WHITNEY D. M., ANIGSTEIN L., MICKS D. W. Antibacterial activity of hydrolyzed red blood cells in vitro. Proc Soc Exp Biol Med. 1950 Jun;74(2):346–350. doi: 10.3181/00379727-74-17902. [DOI] [PubMed] [Google Scholar]
