Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1986 Oct;24(4):542–547. doi: 10.1128/jcm.24.4.542-547.1986

Candida detection system (CAND-TEC) to differentiate between Candida albicans colonization and disease.

J C Fung, S T Donta, R C Tilton
PMCID: PMC268967  PMID: 3533975

Abstract

Eighty-three serum specimens from 24 patients infected with Candida albicans were examined for circulating Candida protein antigens with the Candida Detection System (CAND-TEC; Ramco Laboratories, Inc., Houston, Tex.). The medical records of each patient were reviewed for clinical evidence of Candida colonization or disease, predisposing factors for infection, underlying illness, the presence of a contaminated indwelling venous catheter, intravenous amphotericin B therapy, and outcome. Forty-nine serum specimens with antigen titers of 1:2 or less were obtained either from colonized patients or at a time when disseminated disease was not yet clinically suspected. Except for five specimens from two colonized patients, one with a contaminated arterial line, the other specimens with titers of 1:8 or greater (n = 14) were obtained from patients who had been clinically diagnosed and treated for disseminated candidiasis. Serum specimens with titers of 1:4 were often from patients with deep-seated candidal infection but were not uniformly diagnostic; in this situation additional specimens should be tested for Candida antigen titers. Only 1 of 24 serum specimens from patients with no evidence of C. albicans infection had a Candida protein antigen titer of 1:8. With a 1:8 or greater titer as a criterion for dissemination, the sensitivity of the CAND-TEC system was 71%, with a specificity of 98%. If the 1:8 titer for the colonized patient with a contaminated arterial line is not considered a false-positive result, the CAND-TEC sensitivity was 83%. The latex agglutination assay appears to be a useful, rapid, and noninvasive means of laboratory diagnosis of systemic candidiasis. The recovery of C. albicans from at least three body sites may also be a useful predictor of disseminated disease.

Full text

PDF
542

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auger P., Dumas C., Joly J. A study of 666 strains of Candida albicans: correlation between serotype and susceptibility to 5-fluorocytosine. J Infect Dis. 1979 May;139(5):590–594. doi: 10.1093/infdis/139.5.590. [DOI] [PubMed] [Google Scholar]
  2. Bodey G. P. Fungal infections complicating acute leukemia. J Chronic Dis. 1966 Jun;19(6):667–687. doi: 10.1016/0021-9681(66)90066-x. [DOI] [PubMed] [Google Scholar]
  3. Edwards J. E., Jr, Lehrer R. I., Stiehm E. R., Fischer T. J., Young L. S. Severe candidal infections: clinical perspective, immune defense mechanisms, and current concepts of therapy. Ann Intern Med. 1978 Jul;89(1):91–106. doi: 10.7326/0003-4819-89-1-91. [DOI] [PubMed] [Google Scholar]
  4. Gentry L. O., Wilkinson I. D., Lea A. S., Price M. F. Latex agglutination test for detection of Candida antigen in patients with disseminated disease. Eur J Clin Microbiol. 1983 Apr;2(2):122–128. doi: 10.1007/BF02001577. [DOI] [PubMed] [Google Scholar]
  5. Gold J. W., Wong B., Bernard E. M., Kiehn T. E., Armstrong D. Serum arabinitol concentrations and arabinitol/creatinine ratios in invasive candidiasis. J Infect Dis. 1983 Mar;147(3):504–513. doi: 10.1093/infdis/147.3.504. [DOI] [PubMed] [Google Scholar]
  6. Jones J. M. Kinetics of antibody responses to cell wall mannan and a major cytoplasmic antigen of Candida albicans in rabbits and humans. J Lab Clin Med. 1980 Nov;96(5):845–860. [PubMed] [Google Scholar]
  7. Meckstroth K. L., Reiss E., Keller J. W., Kaufman L. Detection of antibodies and antigenemia in leukemic patients with candidiasis by enzyme-linked immunosorbent assay. J Infect Dis. 1981 Jul;144(1):24–32. doi: 10.1093/infdis/144.1.24. [DOI] [PubMed] [Google Scholar]
  8. Meunier-Carpentier F., Kiehn T. E., Armstrong D. Fungemia in the immunocompromised host. Changing patterns, antigenemia, high mortality. Am J Med. 1981 Sep;71(3):363–370. doi: 10.1016/0002-9343(81)90162-5. [DOI] [PubMed] [Google Scholar]
  9. Myerowitz R. L., Pazin G. J., Allen C. M. Disseminated candidiasis. Changes in incidence, underlying diseases, and pathology. Am J Clin Pathol. 1977 Jul;68(1):29–38. doi: 10.1093/ajcp/68.1.29. [DOI] [PubMed] [Google Scholar]
  10. Sandford G. R., Merz W. G., Wingard J. R., Charache P., Saral R. The value of fungal surveillance cultures as predictors of systemic fungal infections. J Infect Dis. 1980 Oct;142(4):503–509. doi: 10.1093/infdis/142.4.503. [DOI] [PubMed] [Google Scholar]
  11. Weiner M. H., Yount W. J. Mannan antigenemia in the diagnosis of invasive Candida infections. J Clin Invest. 1976 Nov;58(5):1045–1053. doi: 10.1172/JCI108555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. de Repentigny L., Reiss E. Current trends in immunodiagnosis of candidiasis and aspergillosis. Rev Infect Dis. 1984 May-Jun;6(3):301–312. doi: 10.1093/clinids/6.3.301. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES