Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1986 Oct;24(4):620–624. doi: 10.1128/jcm.24.4.620-624.1986

A 96-well epifluorescence assay for rapid assessment of compounds inhibitory to Candida spp.

R F Hector, P C Braun
PMCID: PMC268983  PMID: 2429985

Abstract

A rapid method for the screening of potential antifungal compounds was developed. A variety of compounds were tested against regenerating protoplasts of Candida spp. in a microtiter format. The degree of cell wall formation was assessed by staining with Cellufluor (Polysciences, Inc., Warrington, Pa.), a fluorochrome with known affinity for chitin, followed by determination of fluorescence by using a Dynatech Microfluor reader (Dynatech Laboratories, Inc., Alexandria, Va.). Compounds with known activity against the cell wall or cytoplasmic membrane of fungi inhibited wall synthesis in a concentration-dependent fashion. Treatment with 5-fluorocytosine, however, resulted in no inhibition. In general, protoplasts of C. albicans regenerated more quickly and were more sensitive to the compounds tested than protoplasts of C. tropicalis and C. parapsilosis. While the described method is not specific for a given class of antifungal agents, it may prove useful for testing large numbers of compounds quickly.

Full text

PDF
620

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becker J. M., Covert N. L., Shenbagamurthi P., Steinfeld A. S., Naider F. Polyoxin D inhibits growth of zoopathogenic fungi. Antimicrob Agents Chemother. 1983 Jun;23(6):926–929. doi: 10.1128/aac.23.6.926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Biely P., Krátký Z., Kovarík J., Bauer S. Effect of 2-deoxyglucose on cell wall formation in Saccharomyces cerevisiae and its relation to cell growth inhibition. J Bacteriol. 1971 Jul;107(1):121–129. doi: 10.1128/jb.107.1.121-129.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brillinger G. U. Metabolic products of microorganisms. 181. Chitin synthase from fungi, a test model for substances with insecticidal properties. Arch Microbiol. 1979 Apr;121(1):71–74. doi: 10.1007/BF00409207. [DOI] [PubMed] [Google Scholar]
  4. Chiew Y. Y., Shepherd M. G., Sullivan P. A. Regulation of chitin synthesis during germ-tube formation in Candida albicans. Arch Microbiol. 1980 Mar;125(1-2):97–104. doi: 10.1007/BF00403204. [DOI] [PubMed] [Google Scholar]
  5. Elorza M. V., Rico H., Gozalbo D., Sentandreu R. Cell wall composition and protoplast regeneration in Candida albicans. Antonie Van Leeuwenhoek. 1983 Nov;49(4-5):457–469. doi: 10.1007/BF00399324. [DOI] [PubMed] [Google Scholar]
  6. Endo A., Misato T. Polyoxin D, a competitive inhibitor of UDP-N-acetylglucosamine: chitin N-acetylglucosaminyltransferase in Neurospora crassa. Biochem Biophys Res Commun. 1969 Nov 6;37(4):718–722. doi: 10.1016/0006-291x(69)90870-5. [DOI] [PubMed] [Google Scholar]
  7. Farkas V., Svoboda A., Bauer S. Inhibitory effect of 2-deoxy-d-glucose on the formation of the cell wall in yeast protoplasts. J Bacteriol. 1969 May;98(2):744–748. doi: 10.1128/jb.98.2.744-748.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fiedler H. P. Quantitation of nikkomycins in biological fluids by ion-pair reversed-phase high-performance liquid chromatography. J Chromatogr. 1981 Jan 16;204:313–318. doi: 10.1016/s0021-9673(00)81673-8. [DOI] [PubMed] [Google Scholar]
  9. Gale E. F. The release of potassium ions from Candida albicans in the presence of polyene antibiotics. J Gen Microbiol. 1974 Feb;80(2):451–465. doi: 10.1099/00221287-80-2-451. [DOI] [PubMed] [Google Scholar]
  10. Gopal P., Sullivan P. A., Shepherd M. G. Metabolism of [14C]glucose by regenerating spheroplasts of Candida albicans. J Gen Microbiol. 1984 Feb;130(2):325–335. doi: 10.1099/00221287-130-2-325. [DOI] [PubMed] [Google Scholar]
  11. Lee K. L., Buckley H. R., Campbell C. C. An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida Albicans. Sabouraudia. 1975 Jul;13(2):148–153. doi: 10.1080/00362177585190271. [DOI] [PubMed] [Google Scholar]
  12. Leighton T., Marks E., Leighton F. Pesticides: insecticides and fungicides are chitin synthesis inhibitors. Science. 1981 Aug 21;213(4510):905–907. doi: 10.1126/science.213.4510.905. [DOI] [PubMed] [Google Scholar]
  13. Marx J. L. Chitin synthesis inhibitors: new class of insecticides. Science. 1977 Sep 16;197(4309):1170–1172. doi: 10.1126/science.197.4309.1170. [DOI] [PubMed] [Google Scholar]
  14. McCarthy P. J., Newman D. J., Nisbet L. J., Kingsbury W. D. Relative rates of transport of peptidyl drugs by Candida albicans. Antimicrob Agents Chemother. 1985 Oct;28(4):494–499. doi: 10.1128/aac.28.4.494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nathanson J. A. Caffeine and related methylxanthines: possible naturally occurring pesticides. Science. 1984 Oct 12;226(4671):184–187. doi: 10.1126/science.6207592. [DOI] [PubMed] [Google Scholar]
  16. Rast D. M., Bartnicki-Garcia S. Effects of amphotericin B, nystatin, and other polyene antibiotics on chitin synthase. Proc Natl Acad Sci U S A. 1981 Feb;78(2):1233–1236. doi: 10.1073/pnas.78.2.1233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Shepherd M. G., Sullivan P. A. The control of morphogenesis in Candida albicans. J Dent Res. 1984 Mar;63(3):435–440. doi: 10.1177/00220345840630031501. [DOI] [PubMed] [Google Scholar]
  18. Shepherd M. G., Yin C. Y., Ram S. P., Sullivan P. A. Germ tube induction in Candida albicans. Can J Microbiol. 1980 Jan;26(1):21–26. doi: 10.1139/m80-004. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES