Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1987 Jul;25(7):1233–1238. doi: 10.1128/jcm.25.7.1233-1238.1987

Ultrafiltration to reject human interleukin-1-inducing substances derived from bacterial cultures.

C A Dinarello, G Lonnemann, R Maxwell, S Shaldon
PMCID: PMC269183  PMID: 3112179

Abstract

Interleukin-1 (IL-1), a polypeptide cytokine, is an important mediator of host responses to infection and injury. Picogram per milliliter concentrations of bacterial products (endo- or exotoxins) stimulate human monocytes to produce IL-1 in vitro. The design of this study was based on the clinical model of bacterial contamination of fluid intended to be directly injected into humans. Physiologic saline contaminated with bacterial toxins was passed through a hollow fiber ultrafilter, and the ultrafiltrates were tested for their ability to induce human IL-1 production. The ultrafiltrates were added directly to freshly obtained human blood mononuclear cells, and after 24 h of incubation the supernatant media were assayed for the presence of IL-1. The results indicate that the IL-1-inducing material(s) present in bacterial cultures of gram-negative organisms is rejected by a factor of 100 to 100,000 by molecular size exclusion and by absorption; rejection is sustained for at least 32 liters of fluid; the rejection of Limulus-reactive material by the ultrafilter is greater for purified endotoxin than for native endotoxins derived from live bacterial cultures; and nonendotoxin IL-1-inducing toxins (molecular weight, 24,000) from Staphylococcus aureus are not rejected or absorbed. These results demonstrate that there is a considerable margin of safety with the ultrafiltration method and that it can be applied to clinical situations.

Full text

PDF
1233

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auron P. E., Webb A. C., Rosenwasser L. J., Mucci S. F., Rich A., Wolff S. M., Dinarello C. A. Nucleotide sequence of human monocyte interleukin 1 precursor cDNA. Proc Natl Acad Sci U S A. 1984 Dec;81(24):7907–7911. doi: 10.1073/pnas.81.24.7907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bingel M., Lonnemann G., Koch K. M., Dinarello C. A., Shaldon S. Enhancement of in-vitro human interleukin-1 production by sodium acetate. Lancet. 1987 Jan 3;1(8523):14–16. doi: 10.1016/s0140-6736(87)90703-3. [DOI] [PubMed] [Google Scholar]
  3. Bodel P., Atkins E. Release of endogenous pyrogen by human monocytes. N Engl J Med. 1967 May 4;276(18):1002–1008. doi: 10.1056/NEJM196705042761803. [DOI] [PubMed] [Google Scholar]
  4. Cannon J. G., Dinarello C. A. Increased plasma interleukin-1 activity in women after ovulation. Science. 1985 Mar 8;227(4691):1247–1249. doi: 10.1126/science.3871966. [DOI] [PubMed] [Google Scholar]
  5. Cannon J. G., Evans W. J., Hughes V. A., Meredith C. N., Dinarello C. A. Physiological mechanisms contributing to increased interleukin-1 secretion. J Appl Physiol (1985) 1986 Nov;61(5):1869–1874. doi: 10.1152/jappl.1986.61.5.1869. [DOI] [PubMed] [Google Scholar]
  6. Dinarello C. A. Interleukin-1 and the pathogenesis of the acute-phase response. N Engl J Med. 1984 Nov 29;311(22):1413–1418. doi: 10.1056/NEJM198411293112205. [DOI] [PubMed] [Google Scholar]
  7. Dinarello C. A. Interleukin-1. Rev Infect Dis. 1984 Jan-Feb;6(1):51–95. doi: 10.1093/clinids/6.1.51. [DOI] [PubMed] [Google Scholar]
  8. Dinarello C. A. Interleukin-1: amino acid sequences, multiple biological activities and comparison with tumor necrosis factor (cachectin). Year Immunol. 1986;2:68–89. [PubMed] [Google Scholar]
  9. Dinarello C. A., Krueger J. M. Induction of interleukin 1 by synthetic and naturally occurring muramyl peptides. Fed Proc. 1986 Oct;45(11):2545–2548. [PubMed] [Google Scholar]
  10. Dinarello C. A., O'Connor J. V., LoPreste G., Swift R. L. Human leukocytic pyrogen test for detection of pyrogenic material in growth hormone produced by recombinant Escherichia coli. J Clin Microbiol. 1984 Sep;20(3):323–329. doi: 10.1128/jcm.20.3.323-329.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dinarello C. A., Wolff S. M. Molecular basis of fever in humans. Am J Med. 1982 May;72(5):799–819. doi: 10.1016/0002-9343(82)90548-4. [DOI] [PubMed] [Google Scholar]
  12. Duff G. W., Atkins E. The detection of endotoxin by in vitro production of endogenous pyrogen: comparison with limulus amebocyte lysate gelation. J Immunol Methods. 1982 Aug 13;52(3):323–331. doi: 10.1016/0022-1759(82)90004-7. [DOI] [PubMed] [Google Scholar]
  13. Duff G. W., Atkins E. The inhibitory effect of polymyxin B on endotoxin-induced endogenous pyrogen production. J Immunol Methods. 1982 Aug 13;52(3):333–340. doi: 10.1016/0022-1759(82)90005-9. [DOI] [PubMed] [Google Scholar]
  14. Elin R. J., Wolff S. M. Nonspecificity of the limulus amebocyte lysate test: positive reactions with polynucleotides and proteins. J Infect Dis. 1973 Sep;128(3):349–352. doi: 10.1093/infdis/128.3.349. [DOI] [PubMed] [Google Scholar]
  15. Gery I., Waksman B. H. Potentiation of the T-lymphocyte response to mitogens. II. The cellular source of potentiating mediator(s). J Exp Med. 1972 Jul 1;136(1):143–155. doi: 10.1084/jem.136.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Henderson L. W., Beans E. Successful production of sterile pyrogen-free electrolyte solution by ultrafiltration. Kidney Int. 1978 Nov;14(5):522–525. doi: 10.1038/ki.1978.157. [DOI] [PubMed] [Google Scholar]
  17. Ikejima T., Dinarello C. A., Gill D. M., Wolff S. M. Induction of human interleukin-1 by a product of Staphylococcus aureus associated with toxic shock syndrome. J Clin Invest. 1984 May;73(5):1312–1320. doi: 10.1172/JCI111334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kaye J., Janeway C. A., Jr Induction of receptors for interleukin 2 requires T cell Ag:Ia receptor crosslinking and interleukin 1. Lymphokine Res. 1984 Summer;3(4):175–182. [PubMed] [Google Scholar]
  19. Kotani S., Takada H., Takahashi I., Tsujimoto M., Ogawa T., Ikeda T., Harada K., Okamura H., Tamura T., Tanaka S. Low endotoxic activities of synthetic Salmonella-type lipid A with an additional acyloxyacyl group on the 2-amino group of beta (1-6) glucosamine disaccharide 1,4'-bisphosphate. Infect Immun. 1986 Jun;52(3):872–884. doi: 10.1128/iai.52.3.872-884.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lomedico P. T., Gubler U., Hellmann C. P., Dukovich M., Giri J. G., Pan Y. C., Collier K., Semionow R., Chua A. O., Mizel S. B. Cloning and expression of murine interleukin-1 cDNA in Escherichia coli. 1984 Nov 29-Dec 5Nature. 312(5993):458–462. doi: 10.1038/312458a0. [DOI] [PubMed] [Google Scholar]
  21. Pearson F. C., Bohon J., Lee W., Bruszer G., Sagona M., Jakubowski G., Dawe R., Morrison D., Dinarello C. Characterization of Limulus amoebocyte lysate-reactive material from hollow-fiber dialyzers. Appl Environ Microbiol. 1984 Dec;48(6):1189–1196. doi: 10.1128/aem.48.6.1189-1196.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Raetz C. R. The enzymatic synthesis of lipid A: molecular structure and biologic function of monosaccharide precursors. Rev Infect Dis. 1984 Jul-Aug;6(4):463–471. doi: 10.1093/clinids/6.4.463. [DOI] [PubMed] [Google Scholar]
  23. Wolff S. M. Biological effects of bacterial endotoxins in man. J Infect Dis. 1973 Jul;128(Suppl):259–264. doi: 10.1093/infdis/128.supplement_1.s259. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES