Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1987 Sep;25(9):1725–1729. doi: 10.1128/jcm.25.9.1725-1729.1987

In vitro antimicrobial spectrum, occurrence of synergy, and recommendations for dilution susceptibility testing concentrations of the cefoperazone-sulbactam combination.

R N Jones 1, A L Barry 1, R R Packer 1, W W Gregory 1, C Thornsberry 1
PMCID: PMC269316  PMID: 3498740

Abstract

Broth microdilution tests and an antimicrobial interaction (synergy) studies using various combinations of cefoperazone and sulbactam were performed in an effort to determine the most appropriate in vitro dilution test system. The test results with cefoperazone and sulbactam were categorized as synergistic (complete or partial) for nearly 80% of the strains isolated from clinical trial patients. The results indicate that the cefoperazone-sulbactam fixed ratio (2:1) maximized the cefoperazone spectrum of activity and best approximated the parenteral formulation of the drug. The cefoperazone-sulbactam combination had a greater antimicrobial activity than did the other comparison beta-lactams, except for imipenem, tested against strains of the family Enterobacteriaceae. To be consistent with the National Committee for Clinical Laboratory Standards interpretive breakpoints for cefoperazone alone, the following MIC breakpoints should be applied to the combination (2:1 ratio): less than or equal to 16/8 micrograms/ml, susceptible; 32/16 micrograms/ml, moderately susceptible; and greater than or equal to 64/32 micrograms/ml, resistant.

Full text

PDF
1725

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appelbaum P. C., Jacobs M. R., Spangler S. K., Yamabe S. Comparative activity of beta-lactamase inhibitors YTR 830, clavulanate, and sulbactam combined with beta-lactams against beta-lactamase-producing anaerobes. Antimicrob Agents Chemother. 1986 Nov;30(5):789–791. doi: 10.1128/aac.30.5.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aronoff S. C., Jacobs M. R., Johenning S., Yamabe S. Comparative activities of the beta-lactamase inhibitors YTR 830, sodium clavulanate, and sulbactam combined with amoxicillin or ampicillin. Antimicrob Agents Chemother. 1984 Oct;26(4):580–582. doi: 10.1128/aac.26.4.580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barry A. L., Jones R. N., Packer R. R. In-vitro susceptibility of the Bacteroides fragilis group to cefoperazone, ampicillin, ticarcillin and amoxycillin combined with beta-lactamase inhibitors. J Antimicrob Chemother. 1986 Jan;17(1):125–127. doi: 10.1093/jac/17.1.125. [DOI] [PubMed] [Google Scholar]
  4. Brogden R. N., Carmine A., Heel R. C., Morley P. A., Speight T. M., Avery G. S. Cefoperazone: A review of its in vitro antimicrobial activity, pharmacological properties and therapeutic efficacy. Drugs. 1981 Dec;22(6):423–460. doi: 10.2165/00003495-198122060-00002. [DOI] [PubMed] [Google Scholar]
  5. Crosby M. A., Gump D. W. Activity of cefoperazone and two beta-lactamase inhibitors, sulbactam and clavulanic acid, against Bacteroides spp. correlated with beta-lactamase production. Antimicrob Agents Chemother. 1982 Sep;22(3):398–405. doi: 10.1128/aac.22.3.398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. English A. R., Retsema J. A., Girard A. E., Lynch J. E., Barth W. E. CP-45,899, a beta-lactamase inhibitor that extends the antibacterial spectrum of beta-lactams: initial bacteriological characterization. Antimicrob Agents Chemother. 1978 Sep;14(3):414–419. doi: 10.1128/aac.14.3.414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fu K. P., Neu H. C. Synergistic activity of cefoperazone in combination with beta-lactamase inhibitors. J Antimicrob Chemother. 1981 Mar;7(3):287–292. doi: 10.1093/jac/7.3.287. [DOI] [PubMed] [Google Scholar]
  8. Fuchs P. C., Barry A. L., Jones R. N. In vitro activity and disk susceptibility of Timentin: current status. Am J Med. 1985 Nov 29;79(5B):25–32. doi: 10.1016/0002-9343(85)90125-1. [DOI] [PubMed] [Google Scholar]
  9. Jones R. N., Barry A. L., Thornsberry C., Wilson H. W. The cefoperazone-sulbactam combination. In vitro qualities including beta-lactamase stability, antimicrobial activity, and interpretive criteria for disk diffusion tests. Am J Clin Pathol. 1985 Oct;84(4):496–504. doi: 10.1093/ajcp/84.4.496. [DOI] [PubMed] [Google Scholar]
  10. Jones R. N., Packer R. R. Antimicrobial activity of amikacin combinations against Enterobacteriaceae moderately susceptible to third-generation cephalosporins. Antimicrob Agents Chemother. 1982 Dec;22(6):985–989. doi: 10.1128/aac.22.6.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jones R. N., Wilson H. W., Thornsberry C., Barry A. L. In vitro antimicrobial activity of cefoperazone-sulbactam combinations against 554 clinical isolates including a review and beta-lactamase studies. Diagn Microbiol Infect Dis. 1985 Nov;3(6):489–499. doi: 10.1016/s0732-8893(85)80005-5. [DOI] [PubMed] [Google Scholar]
  12. Kobayashi S., Arai S., Hayashi S., Fujimoto K. Beta-lactamase stability of cefpirome (HR 810), a new cephalosporin with a broad antimicrobial spectrum. Antimicrob Agents Chemother. 1986 Nov;30(5):713–718. doi: 10.1128/aac.30.5.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Simpson I. N., Harper P. B., O'Callaghan C. H. Principal beta-lactamases responsible for resistance to beta-lactam antibiotics in urinary tract infections. Antimicrob Agents Chemother. 1980 Jun;17(6):929–936. doi: 10.1128/aac.17.6.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Yu P. K., Washington J. A., 2nd Bactericidal activity of cefoperazone with CP-45,899 against large inocula of beta-lactamase-producing Haemophilus influenzae. Antimicrob Agents Chemother. 1981 Jul;20(1):63–65. doi: 10.1128/aac.20.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES