Skip to main content
Genetics, Selection, Evolution : GSE logoLink to Genetics, Selection, Evolution : GSE
. 2004 May 15;36(3):261–279. doi: 10.1186/1297-9686-36-3-261

Mapping multiple QTL using linkage disequilibrium and linkage analysis information and multitrait data

Theo HE Meuwissen 1,, Mike E Goddard 2
PMCID: PMC2697201  PMID: 15107266

Abstract

A multi-locus QTL mapping method is presented, which combines linkage and linkage disequilibrium (LD) information and uses multitrait data. The method assumed a putative QTL at the midpoint of each marker bracket. Whether the putative QTL had an effect or not was sampled using Markov chain Monte Carlo (MCMC) methods. The method was tested in dairy cattle data on chromosome 14 where the DGAT1 gene was known to be segregating. The DGAT1 gene was mapped to a region of 0.04 cM, and the effects of the gene were accurately estimated. The fitting of multiple QTL gave a much sharper indication of the QTL position than a single QTL model using multitrait data, probably because the multi-locus QTL mapping reduced the carry over effect of the large DGAT1 gene to adjacent putative QTL positions. This suggests that the method could detect secondary QTL that would, in single point analyses, remain hidden under the broad peak of the dominant QTL. However, no indications for a second QTL affecting dairy traits were found on chromosome 14.

Keywords: QTL mapping, linkage analysis, linkage disequilibrium mapping, multitrait analysis, multi-locus mapping

Full Text

The Full Text of this article is available as a PDF (323.2 KB).


Articles from Genetics, Selection, Evolution : GSE are provided here courtesy of BMC

RESOURCES