Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2009 Feb 18;4(2):186–201. doi: 10.1002/biot.200800241

Emerging trends in plasma‐free manufacturing of recombinant protein therapeutics expressed in mammalian cells

Leopold Grillberger 1, Thomas R Kreil 1, Sonia Nasr 2, Manfred Reiter 1,
PMCID: PMC2699044  PMID: 19226552

Abstract

Mammalian cells are the expression system of choice for therapeutic proteins, especially those requiring complex post‐translational modifications. Traditionally, these cells are grown in medium supplemented with serum and other animal‐ or human‐derived components to support viability and productivity. Such proteins are also typically added as excipients and stabilizers in the final drug formulation. However, the transmission of hepatitis B in the 1970s and of hepatitis C and HIV in the 1980s through plasma‐derived factor VIII concentrates had catastrophic consequences for hemophilia patients. Thus, due to regulatory concerns about the inherent potential for transmission of infectious agents as well as the heterogeneity and lack of reliability of the serum supply, a trend has emerged to eliminate the use of plasma‐derived additives in the production and formulation of recombinant protein therapeutics. This practice began with products used in the treatment of hemophilia and is progressively expanding throughout the entire industry. The plasma‐free method of producing recombinant therapeutics is accomplished by the use of both cell culture media and final product formulations that do not contain animal‐ or human‐derived additives. A number of recombinant therapeutic proteins for the treatment of several different diseases have been produced by plasma‐free processes, with the objective of improving safety by eliminating blood‐borne pathogens or by reducing immunogenicity. This review describes the factors that drove the development of plasma‐free protein therapeutics and provides examples of advances in manufacturing that have made possible the removal of human and animal‐derived products from all steps of recombinant protein production.

Keywords: serum‐free, animal‐free, emerging pathogen, recombinant therapeutic protein, biopharmaceutical manufacturing

REFERENCES

  • 1. Walsh, G. , Biopharmaceutical benchmarks. Nature Biotech. 2006, 24, 769–776. [DOI] [PubMed] [Google Scholar]
  • 2. Dingermann, T. , Recombinant therapeutic proteins: production platforms and challenges. Biotechnol J. 2008, 3, 90–97. [DOI] [PubMed] [Google Scholar]
  • 3. Wurm, F. M. , Production of recombinant protein therapeutics in cultivated mammalian cells. Nature Biotech. 2004, 22, 1393–1398. [DOI] [PubMed] [Google Scholar]
  • 4. Mohan, C. , Kim, Y. G. , Koo, J. , Lee, G. M. , Assessment of cell engineering strategies for improved therapeutic protein production in CHO cells. Biotechnol J. 2008, 3, 624–630. [DOI] [PubMed] [Google Scholar]
  • 5. Gerngross, T.U. , Advances in the production of human therapeutic proteins in yeasts and filamentous fungi. Nature Biotech. 2004, 22, 1409–1414. [DOI] [PubMed] [Google Scholar]
  • 6. Shapiro, A. D. , Anti‐hemophilic factor (recombinant), plasma/albumin‐free method (octocog‐alpha; ADVATE) in the management of hemophilia A. Vasc Health Risk Manag. 2007, 3, 555–565. [PMC free article] [PubMed] [Google Scholar]
  • 7. Ewenstein, B. M. , Collins, P. , Tarantino, M. D. , Negrier, C. et al., Hemophilia therapy innovation: development of an advanced category recombinant factor VIII by a plasma/albumin‐free method. Proceedings of a Special Symposium at the XIXth Congress of the International Society on Thrombosis and Haemostasis, July 12–18, 2003, Birmingham, UK. Semin Hematol. 2004, 41, 1 2 (Suppl ), 1–16. [DOI] [PubMed] [Google Scholar]
  • 8. Dodd, R. Y. , Leiby, D. A. , Emerging infectious threats to the blood supply. Annu Rev Med. 2004, 55, 191–207. [DOI] [PubMed] [Google Scholar]
  • 9. Guan, Y. , Zheng, B. J. , He, Y. Q. , Liu, X. L. et al., Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 2003, 302, 276–278. [DOI] [PubMed] [Google Scholar]
  • 10. Hino, S. , TTV, a new human virus with single stranded circular DNA genome. Rev Med Virol. 2002, 12, 151–158. [DOI] [PubMed] [Google Scholar]
  • 11. Hilgartner, M.W. , The need for recombinant factor VIII: historical background and rationale. Semin Hematol. 1991, 28, (2 Suppl 1), 6–9. [PubMed] [Google Scholar]
  • 12. Ludlam, C. A. , Powderly, W. G. , Bozzette, S. , Diamond, M. et al., Clinical perspectives of emerging pathogens in bleeding disorders. Lancet 2006, 367, 252–261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Schneider, B. , Fryer, J. F. , Oldenburg, J. , Brackmann, H. H. et al., Frequency of contamination of coagulation factor concentrates with novel human parvovirus PARV4. Haemophilia 2008, Jun 18. [DOI] [PubMed] [Google Scholar]
  • 14. Fryer, J. F. , Hubbard, A. R. , Baylis, S. A. , Human parvovirus PARV4 in clotting factor VIII concentrates. Vox Sang. 2007, 93, 341–347. [DOI] [PubMed] [Google Scholar]
  • 15. Soucie, J. M. , Siwak, E.B. , Hooper, W.C. , Evatt, B. L. et al., Human parvovirus B19 in young male patients with hemophilia A: associations with treatment product exposure and joint range‐of‐motion limitation. Transfusion 2004, 44, 1179–1185. [DOI] [PubMed] [Google Scholar]
  • 16. Gaboulaud, V. , Parquet, A. , Tahiri, C. , Claeyssens, S. et al., Suivi Thérapeutique National des Hémophiles Group. Prevalence of IgG antibodies to human parvovirus B19 in haemophilia children treated with recombinant factor (F)VIII only or with at least one plasma‐derived FVIII or FIX concentrate: results from the French haemophilia cohort. Br J Haematol. 2002, 116, 383–389. [PubMed] [Google Scholar]
  • 17. Toole, J. J. , Knopf, J. L. , Wozney, J. M. , Sultzman, L. A. et al., Molecular cloning of a cDNA encoding human antihaemophilic factor. 1984. Biotechnology 1992, 24, 310–315. [PubMed] [Google Scholar]
  • 18. Vehar, G. A. , Keyt, B. , Eaton, D. , Rodriguez, H. et al., Structure of human factor VIII. Nature 1984, 312, 337–342. [DOI] [PubMed] [Google Scholar]
  • 19. Aygoren‐Pursun, E. , Scharrer, I. , A multicenter pharmacosurveillance study for the evaluation of the efficacy and safety of recombinant factor VIII in the treatment of patients with hemophilia A. German Kogenate Study Group. Thromb Haemost. 1997, 78, 1352–1356. [PubMed] [Google Scholar]
  • 20. Tarantino, M.D. , Collins, P.W. , Hay, C. R. , Shapiro, A.D. et al., rAHF‐PFM Clinical Study Group. Clinical evaluation of an advanced category antihaemophilic factor prepared using a plasma/albumin‐free method: pharmacokinetics, efficacy, and safety in previously treated patients with haemophilia A. Haemophilia 2004, 10, 428–437. [DOI] [PubMed] [Google Scholar]
  • 21. Dollard, S. C. , Nelson, K. E. , Ness, P. M. , Stambolis, V. et al., Possible transmission of human herpesvirus‐8 by blood transfusion in a historical United States cohort. Transfusion 2005, 45, 500–503. [DOI] [PubMed] [Google Scholar]
  • 22. Hladik, W. , Dollard, S. C. , Mermin, J. , Fowlkes, A. L. et al., Transmission of human herpesvirus 8 by blood transfusion. Engl J Med. 2006, 355, 1331–1338. [DOI] [PubMed] [Google Scholar]
  • 23. Chamberland, M. , Khabbaz, R. F. , Emerging issues in blood safety. Infect Dis Clin North Am. 1998, 12, 217–229. [DOI] [PubMed] [Google Scholar]
  • 24. Chamberland, M. E. , Alter, H. J. , Busch, M. P. , Nemo, G. et al., Emerging infectious disease issues in blood safety. Emerg. Infect. Dis. 2001, 7, 552–553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Hill, A. F. , Zeidler, M. , Ironside, J. , Collinge, J. , Diagnosis of new variant Creutzfeldt‐Jakob disease by tonsil biopsy. Lancet 1997, 349, 99–100. [DOI] [PubMed] [Google Scholar]
  • 26. Llewelyn, C. A. , Hewitt, P. E. , Knight, R. S. G. , Amar, K. et al., Possible transmission of variant Creutzfeldt‐Jakob disease by blood transfusion. Lancet 2004, 363, 417–421. [DOI] [PubMed] [Google Scholar]
  • 27. Peden, A. H. , Head, M.W. , Ritchie, D. L. , Bell, J. E. et al., Preclinical vCJD after blood transfusion in a PRNP codon 129 heterozygous patient. Lancet 2004, 364, 527–529. [DOI] [PubMed] [Google Scholar]
  • 28. Ironside, J.W. , Head, M.W. , Variant Creutzfeldt‐Jakob disease: risk of transmission by blood and blood products. Haemophilia 2004, 10, (Suppl 4), 64–69. [DOI] [PubMed] [Google Scholar]
  • 29. Houston, F. , McCutcheon, S. , Goldmann, W. , Chong, A. et al., Prion diseases are efficiently transmitted by blood transfusion in sheep. Blood 2008, Jul 22. [DOI] [PubMed] [Google Scholar]
  • 30. Ludlam, C. A. , Turner, M. L. , Managing the risk of transmission of variant Creutzfeldt Jakob disease by blood products. Br J Haematol. 2006, 132, 13–24. [DOI] [PubMed] [Google Scholar]
  • 31. Collinge, J. , Whitfield, J. , McKintosh, E. , Beck, J. et al., Kuru in the 21st century – an acquired human prion disease with very long incubation periods. Lancet 2006, 367, 2068–2074. [DOI] [PubMed] [Google Scholar]
  • 32. Cochius, J. I. , Hyman, N. , Esiri, M. M. : Creutzfeldt‐Jakob disease in a recipient of human pituitary‐derived gonadotrophin: a second case. J Neurol Neurosurg Psychiatry 1992, 55, 1094–1095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33. Swerdlow, A. J. , Higgins, C. D. , Adlard, P. , Jones, M. E. et al., Creutzfeldt‐Jakob disease in United Kingdom patients treated with human pituitary growth hormone. Neurology 2003, 61, 783–791. [DOI] [PubMed] [Google Scholar]
  • 34. Holman, R. C. , Khan, A. S. , Belay, E. D. , Schonberger, L. B. : Creutzfeldt‐Jakob disease in the United States, 1979–1994: using national mortality data to assess the possible occurrence of variant cases. Emerg. Infect. Dis. 1996, 2, 333–337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35. Billette de Villemeur, T. , Deslys, J. P. , Pradel, A. , Soubrié, C. et al., Creutzfeldt‐Jakob disease from contaminated growth hormone extracts in France. Neurology 1996, 47, 690–695. [DOI] [PubMed] [Google Scholar]
  • 36. Croes, E. A. , Roks, G. , Jansen, G. H. , Nijssen, P. C. et al., Creutzfeldt‐Jakob disease 38 years after diagnostic use of human growth hormone. Neurol Neurosurg Psychiatry 2002, 72, 792–793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37. Cochius, J. I. , Burns, R. J. , Blumbergs, P. C. , Mack, K. et al., Creutzfeldt‐Jakob disease in a recipient of human pituitaryderived gonadotrophin. Aust NZ J Med. 1990, 20, 592–593. [DOI] [PubMed] [Google Scholar]
  • 38. Dumble, L. J. , Klein, R. D. : Creutzfeld‐Jacob disease legacy for Australian women treated with human pituitary gonadotropins. Lancet 1992, 340, 847–848. [DOI] [PubMed] [Google Scholar]
  • 39. Morens, D. K. , Folkers, G. K. , Fauci, A. S. : The challenge of emerging and re‐emerging infectious diseases. Nature 2004, 430, 242–249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40. Beisel, C. E. , Morens, D. M. : Variant Creutzfeldt‐Jakob disease and the acquired and transmissible spongiform encephalopathies. Clin Infect Dis. 2004, 385, 697–704. [DOI] [PubMed] [Google Scholar]
  • 41. Xie, Z. , O'Rourke, K. I. , Dong, Z. , Jenny, A. L. et al., Chronic wasting disease of elk and deer and Creutzfeldt‐Jakob disease: comparative analysis of the scrapie prion protein. J Biol Chem. 2006, 281, 4199–4206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42. Anderson, C. A. , Bosque, P. , Filley, C. M. , Arciniegas, D. B. et al., Colorado surveillance program for chronic wasting disease transmission to humans: lessons from 2 highly suspicious but negative cases. Arch Neurol. 2007, 64, 439–441. [DOI] [PubMed] [Google Scholar]
  • 43. Busch, M. P. , Kleinman, S. H. , Nemo, G. J. : Current and emerging infectious risks of blood transfusions. JAMA 2003, 289, 959–962. [DOI] [PubMed] [Google Scholar]
  • 44. Stein, A. , Decreasing variability in your cell culture. Biotechniques 2007, 43, 228–229. [DOI] [PubMed] [Google Scholar]
  • 45. Froud, S. J. , The development, benefits and disadvantages of serum‐free media. Dev Biol Stand. 1999, 99, 157–16. [PubMed] [Google Scholar]
  • 46. Butler, M. : Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals. Appl Microbiol Biotechnol. 2005, 68, 283–291. [DOI] [PubMed] [Google Scholar]
  • 47. Zhou, J. X. , Tressel, T. , Yang, X. , Seewoester, T. : Implementation of advanced technologies in commercial monoclonal antibody production.. Biotechnol J. 2008, Aug. 29. [DOI] [PubMed] [Google Scholar]
  • 48. Merten, O. W. : Development of serum‐free media for cell growth and production of viruses/viral vaccines – safety issues of animal products used in serum‐free media.. Dev Biol (Basel) 2002, 111, 233–257. [PubMed] [Google Scholar]
  • 49. Keenan, J. , Pearson, D. , Clynes, M. , The role of recombinant proteins in the development of serum‐free media. Cytotechnology 2006, 50, 49–56. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50. Sunstrom, N. A. , Gay, R. D. , Wong, D. C. , Kitchen, N. A. et al., Insulin‐like growth factor‐I and transferrin mediate growth and survival of Chinese hamster ovary cells. Biotechnol Prog. 2000, 16, 698–702. [DOI] [PubMed] [Google Scholar]
  • 51. Kaufman, R. J. , Wasley, L.C. , Davies, M.V. , Wise, R. J. et al., Effect of von Willebrand factor coexpression on the synthesis and secretion of factor VIII in Chinese hamster ovary cells. Mol Cell Biol. 1989, 9, 1233–1242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52. Erstad, B. L. , Viral infectivity of albumin and plasma protein fraction. Pharmacotherapy 1996, 16, 996–1001. [PubMed] [Google Scholar]
  • 53. Peters, T. J., The albumin molecule: its structure and chemical properties, in: All About Albumin: Biochemistry, Genetics and Medical Applications. San Diego: Academic Press 1996, pp. 9–75.
  • 54. Berezenko, S. , Heterogeneity and oxidation status of commercial human albumin preparations in clinical use. Crit Care Med. 2006, 34, 1291. [DOI] [PubMed] [Google Scholar]
  • 55. Tarelli, E. , Mire‐Sluis, A. , Tivnann, H. A. , Bolgiano, B. et al., Recombinant human albumin as a stabilizer for biological materials and for the preparation of international reference reagents. Biologicals 1998, 26, 331–346. [DOI] [PubMed] [Google Scholar]
  • 56. Thyagarajapuram, N. , Olsen, D. , Middaugh, C. R. , Stabilization of proteins by recombinant human gelatins. Pharm Sci. 2007, 96, 3304–3315. [DOI] [PubMed] [Google Scholar]
  • 57. Thyagarajapuram, N. , Olsen, D. , Middaugh, C. R. , The structure, stability, and complex behavior of recombinant human gelatins. Pharm Sci. 2007, 96, 3363–3378. [DOI] [PubMed] [Google Scholar]
  • 58. Hermeling, S. , Crommelin, D. J. , Schellekens, H. , Jiskoot, W. , Structure‐immunogenicity relationships of therapeutic proteins. Pharm Res. 2004, 21, 897–903. [DOI] [PubMed] [Google Scholar]
  • 59. Maas, C. , Hermeling, S. , Bouma, B. , Jiskoot, W. et al., A role for protein misfolding in immunogenicity of biopharmaceuticals. Biol Chem. 2007, 282, 2229–223. [DOI] [PubMed] [Google Scholar]
  • 60. Hermeling, S. , Schellekens, H. , Maas, C. , Gebbink, M.F. et al., Antibody response to aggregated human interferon alpha2b in wild‐type and transgenic immune tolerant mice depends on type and level of aggregation. Pharm Sci. 2006, 95, 1084–1096. [DOI] [PubMed] [Google Scholar]
  • 61. Ruiz, L. , Reyes, N. , Duany, L. , Franco, A. et al., Long‐term stabilization of recombinant human interferon alpha 2b in aqueous solution without serum albumin. Int J Pharm. 2003, 264, 57–72. [DOI] [PubMed] [Google Scholar]
  • 62. Jaber, A. , Driebergen, R. , Giovannoni, G. , Schellekens, H. et al., The Rebif new formulation story: it's not trials and error. Drugs R D. 2007, 8, 335–348. [DOI] [PubMed] [Google Scholar]
  • 63. Giovannoni, G. , Barbarash, O. , Casset‐Semanaz, F. , King, J. et al., Safety and immunogenicity of a new formulation of interferon â1a (Rebif(R) New Formulation) in a Phase IIIb study in patients with relapsing multiple sclerosis: 96‐week results. Mult Scler. 2008, Aug. 28 25, –. [DOI] [PubMed] [Google Scholar]
  • 64. Pavlou, A. K. , Belsey, M. J. , The therapeutic antibodies market to 2008. Eur J Pharm Biopharm. 2005, 59, 389–396. [DOI] [PubMed] [Google Scholar]
  • 65. Morrow, K. J. Jr. : Advances in antibody manufacturing using mammalian cells.. Biotechnol Annu Rev. 2007, 13, 95–113. [DOI] [PubMed] [Google Scholar]
  • 66. Merten, O. W. , Safety issues of animal products used in serum‐free media. Dev Biol Stand. 1999, 99, 167–180. [PubMed] [Google Scholar]
  • 67. Even, M. S. , Sandusky, C. B. , Barnard, N. D. , Serum‐free hybridoma culture: ethical, scientific and safety considerations. Trends Biotechnol. 2006, 24, 105–108. [DOI] [PubMed] [Google Scholar]
  • 68. Dolan, G. , Clinical implications of emerging pathogens in haemophilia: the variant Creutzfeldt‐Jakob disease experience. Haemophilia 2006, 12, Suppl 1, 16–20. [DOI] [PubMed] [Google Scholar]
  • 69. Valentino, L. A. , Oza, V. M. , Blood safety and the choice of anti‐hemophilic factor concentrate. Pediatr Blood Cancer 2006, 47, 245–254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70. Dodd, R.Y. , Current risk for transfusion transmitted infections. Curr Opin Hematol. 2007, 14, 671–676. [DOI] [PubMed] [Google Scholar]
  • 71. Wroe, S. J. , Pal, S. , Siddique, D. , Hyare, H. et al., Clinical presentation and pre‐mortem diagnosis of variant Creutzfeldt‐Jakob disease associated with blood transfusion: a case report. Lancet 2006, 368, 2061–2067. [DOI] [PubMed] [Google Scholar]
  • 72. Pipe, S. , Consideration in hemophilia therapy selection. Semin Hematol. 2006, 43, (2 Suppl 3), S23–27. [DOI] [PubMed] [Google Scholar]
  • 73. Evatt, B. , Infectious disease in the blood supply and the public health response. Semin Hematol. 2006, 43, (2 Suppl 3), S4–9. [DOI] [PubMed] [Google Scholar]
  • 74. EMEA, Note for guidance on minimising the risk of transmitting animal spongiform encephalopathy agents via human and veterinary medicinal products (EMEA/410/01.Rev2, adopted July 2004). Official Journal of the European Union, http://www.emea.europa.eu/pdfs/human/bwp/TSE%20NFG%20410‐rev2.pdf
  • 75. CPMP, Core SPC for human plasma derived and recombinant coagulation factor VIII products. 2000, June 29, 1–7, http://www.emea.europa.eu/pdfs/human/bpwg/161999en.pdf
  • 76. NHF, MASAC recommendations concerning the treatment of hemophilia and other bleeding disorders. MASAC recommendation #182, 2008, April, http://www.hemophilia.org
  • 77. Keeling, D. , Tait, C. , Makris, M. , Guideline on the selection and use of therapeutic products to treat haemophilia and other hereditary bleeding disorders. Haemophilia 2008, 14, 671–684. [DOI] [PubMed] [Google Scholar]
  • 78. CHS, CHS Policy on Blood, Blood Products and their Alternatives. 2003, May 15, http://www.hemophilia.ca/en/1.2.1.php
  • 79. FDA, Points to consider in the characterization of cell lines used to produce biologicals. 1993, July 12, http://www.fda. gov/CBER/gdlns/ptccell.pdf
  • 80. FDA, Guidance for Industry. Characterization and qualification of cell substrates and other biological starting materials used in the production of viral vaccines for the prevention and treatment of infectious diseases. 2006‐Draft, http://www.fda.gov/Cber/gdlns/vaccsubstrates.pdf
  • 81. ICH, Q5A(R1): Viral safety evaluation of biotechnology products derived from cell lines of human or animal origin. 1997, March, http://www.ich.org/LOB/media/MEDIA425.pdf
  • 82. ICH, Q5D: Derivation and characterisation of cell substrates used for production of biotechnological/biological products. 1997, July, http://www.ich.org/LOB/media/MEDIA429.pdf
  • 83. Heneine, W. , Switzer, W. M. , Soucie, J. M. , Evatt, B. L. et al., Evidence of porcine endogenous retroviruses in porcine factor VIII and evaluation of transmission to recipients with hemophilia. Infect Dis. 2001, 183, 648–652. [DOI] [PubMed] [Google Scholar]
  • 84. Cournoyer, D. , Toffelmire, E. B. , Wells, G. A. , Barber, D. L. et al., Canadian PRCA Focus Group. Anti‐erythropoietin antibody‐mediated pure red cell aplasia after treatment with recombinant erythropoietin products: recommendations for minimization of risk. Am Soc Nephrol. 2004, 15, 2728–2734. [DOI] [PubMed] [Google Scholar]
  • 85. Eckardt, K. U. , Casadevall, N. , Pure red‐cell aplasia due to anti‐erythropoietin antibodies. Nephrol Dial Transplant. 2003, 18, 865–869. [DOI] [PubMed] [Google Scholar]
  • 86. Serrato, J. A. , Hernández, V. , Estrada‐Mondaca, S. , Palomares, L. A. et al., Differences in the glycosylation profile of a monoclonal antibody produced by hybridomas cultured in serum‐supplemented, serum‐free or chemically defined media. Biotechnol Appl Biochem. 2007, 47(Pt2), 113–124. [DOI] [PubMed] [Google Scholar]
  • 87. Anonymous, Abseamed – European Public Assessment Report (Scientific Discussion) 2007, http://www.emea.europa.eu/humandocs/PDFs/EPAR/abseamed/H‐727‐en6.pdf
  • 88. Wang, S. S. , Wu, J. W. , Yamamoto, S. , Liu, H. S. , Diseases of protein aggregation and the hunt for potential pharmacological agents. Biotechnol J. 2008, 3, 165–192. [DOI] [PubMed] [Google Scholar]

Articles from Biotechnology Journal are provided here courtesy of Wiley

RESOURCES