Abstract
The glycoinositol phospholipid (GIPL) profiles of American Leishmania spp. (L. mexicana and L. braziliensis), Leishmania donovani, and American Trypanosoma spp. (T. cruzi and T. rangeli) were compared. The major GIPLs in these parasites include tetraglycosyl-, pentaglycosyl-, and hexaglycosylphosphatidylinositol. These were partially identified by their comigration by high-performance thin-layer chromatography with purified L. major GIPLs, gas-liquid chromatography of the monosaccharides released after aqueous HF treatment, N-acetylation and methanolysis, sensitivity to exoglycosidases, and antibody absorption on several specific natural haptens. Members of the genus Leishmania have two other highly polar glycolipids, while the T. rangeli glycolipid profile was quite different from those of other kinetoplastids that were studied. On a weight basis, the glycan core of L. major GIPL-1 is the most reactive, followed by GIPL-3 and GIPL-2. Antibodies to the core glycans of GIPL-1, GIPL-2, and GIPL-3 were present at a low titer in the serum of every normal individual studied, while elevated GIPL-2 antibody levels were present in 80 to 100% of T. cruzi-, T. rangeli-, or L. donovani-infected patients, with lower values being found for GIPL-3 (30 to 60%) and GIPL-1 (30 to 50%). Except for GIPL-2 antibodies, which were mainly located on immunoglobulin G (IgG) and IgM, GIPL-1 and GIPL-3 antibodies were mainly distributed in IgM, with lower reactivity present in IgG. Antigen-antibody binding was very selectively blocked with Gal(alpha 1-3)Man, or Gal(beta 1-4)Man, Gal(alpha 1-3)Gal, and Gal(alpha 1-6)Gal for GIPL-1, GIPL-2, and GIPL-3 antibodies, respectively.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Avila J. L., Avila A. Defective transport of pyrazolopyrimidine ribosides in insensitive Trypanosoma cruzi wild strains is a parasite-stage specific and reversible characteristic. Comp Biochem Physiol B. 1987;87(3):489–495. doi: 10.1016/0305-0491(87)90042-3. [DOI] [PubMed] [Google Scholar]
- Avila J. L., Avila A., de Casanova M. A. Differential metabolism of allopurinol and derivatives in Trypanosoma rangeli and T. cruzi culture forms. Mol Biochem Parasitol. 1981 Dec 31;4(5-6):265–272. doi: 10.1016/0166-6851(81)90059-1. [DOI] [PubMed] [Google Scholar]
- Avila J. L., Bretaña A., Casanova M. A., Avila A., Rodríguez F. Trypanosoma cruzi: defined medium for continuous cultivation of virulent parasites. Exp Parasitol. 1979 Aug;48(1):27–35. doi: 10.1016/0014-4894(79)90051-1. [DOI] [PubMed] [Google Scholar]
- Avila J. L., Rojas M. A galactosyl(alpha 1-3)mannose epitope on phospholipids of Leishmania mexicana and L. braziliensis is recognized by trypanosomatid-infected human sera. J Clin Microbiol. 1990 Jul;28(7):1530–1537. doi: 10.1128/jcm.28.7.1530-1537.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Avila J. L., Rojas M., García L. Persistence of elevated levels of galactosyl-alpha(1-3)galactose antibodies in sera from patients cured of visceral leishmaniasis. J Clin Microbiol. 1988 Sep;26(9):1842–1847. doi: 10.1128/jcm.26.9.1842-1847.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Avila J. L., Rojas M., Towbin H. Serological activity against galactosyl-alpha(1-3)galactose in sera from patients with several kinetoplastida infections. J Clin Microbiol. 1988 Jan;26(1):126–132. doi: 10.1128/jcm.26.1.126-132.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Avila J. L., Rojas M., Velazquez-Avila G., Rieber M. Antibodies to laminin in Trypanosoma rangeli-infected subjects. Parasitol Res. 1987;73(2):178–179. doi: 10.1007/BF00536476. [DOI] [PubMed] [Google Scholar]
- Convit J., Castellanos P. L., Rondon A., Pinardi M. E., Ulrich M., Castes M., Bloom B., Garcia L. Immunotherapy versus chemotherapy in localised cutaneous leishmaniasis. Lancet. 1987 Feb 21;1(8530):401–405. doi: 10.1016/s0140-6736(87)90116-4. [DOI] [PubMed] [Google Scholar]
- Couto A. S., Gonçalves M. F., Colli W., de Lederkremer R. M. The N-linked carbohydrate chain of the 85-kilodalton glycoprotein from Trypanosoma cruzi trypomastigotes contains sialyl, fucosyl and galactosyl (alpha 1-3)galactose units. Mol Biochem Parasitol. 1990 Feb;39(1):101–107. doi: 10.1016/0166-6851(90)90012-b. [DOI] [PubMed] [Google Scholar]
- DAWSON R. M. A hydrolytic procedure for the identification and estimation of individual phospholipids in biological samples. Biochem J. 1960 Apr;75:45–53. doi: 10.1042/bj0750045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferguson M. A., Williams A. F. Cell-surface anchoring of proteins via glycosyl-phosphatidylinositol structures. Annu Rev Biochem. 1988;57:285–320. doi: 10.1146/annurev.bi.57.070188.001441. [DOI] [PubMed] [Google Scholar]
- Galili U., Mandrell R. E., Hamadeh R. M., Shohet S. B., Griffiss J. M. Interaction between human natural anti-alpha-galactosyl immunoglobulin G and bacteria of the human flora. Infect Immun. 1988 Jul;56(7):1730–1737. doi: 10.1128/iai.56.7.1730-1737.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McConville M. J., Bacic A. A family of glycoinositol phospholipids from Leishmania major. Isolation, characterization, and antigenicity. J Biol Chem. 1989 Jan 15;264(2):757–766. [PubMed] [Google Scholar]
- McConville M. J., Bacic A. The glycoinositolphospholipid profiles of two Leishmania major strains that differ in lipophosphoglycan expression. Mol Biochem Parasitol. 1990 Jan 1;38(1):57–67. doi: 10.1016/0166-6851(90)90205-z. [DOI] [PubMed] [Google Scholar]
- McConville M. J., Homans S. W., Thomas-Oates J. E., Dell A., Bacic A. Structures of the glycoinositolphospholipids from Leishmania major. A family of novel galactofuranose-containing glycolipids. J Biol Chem. 1990 May 5;265(13):7385–7394. [PubMed] [Google Scholar]
- Milani S. R., Travassos L. R. Anti-alpha-galactosyl antibodies in chagasic patients. Possible biological significance. Braz J Med Biol Res. 1988;21(6):1275–1286. [PubMed] [Google Scholar]
- Rosen G., Påhlsson P., Londner M. V., Westerman M. E., Nilsson B. Structural analysis of glycosyl-phosphatidylinositol antigens of Leishmania major. J Biol Chem. 1989 Jun 25;264(18):10457–10463. [PubMed] [Google Scholar]
- Singh B. N., Costello C. E., Beach D. H., Holz G. G., Jr Di-O-alkylglycerol, mono-O-alkylglycerol and ceramide inositol phosphates of Leishmania mexicana mexicana promastigotes. Biochem Biophys Res Commun. 1988 Dec 30;157(3):1239–1246. doi: 10.1016/s0006-291x(88)81007-6. [DOI] [PubMed] [Google Scholar]
- Towbin H., Rosenfelder G., Wieslander J., Avila J. L., Rojas M., Szarfman A., Esser K., Nowack H., Timpl R. Circulating antibodies to mouse laminin in Chagas disease, American cutaneous leishmaniasis, and normal individuals recognize terminal galactosyl(alpha 1-3)-galactose epitopes. J Exp Med. 1987 Aug 1;166(2):419–432. doi: 10.1084/jem.166.2.419. [DOI] [PMC free article] [PubMed] [Google Scholar]

