Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1992 Oct;30(10):2576–2582. doi: 10.1128/jcm.30.10.2576-2582.1992

Detection of Babesia bigemina-infected carriers by polymerase chain reaction amplification.

J V Figueroa 1, L P Chieves 1, G S Johnson 1, G M Buening 1
PMCID: PMC270481  PMID: 1400956

Abstract

A SpeI-AvaI fragment (0.3 kbp) from pBbi16 (a pBR322 derivative containing a 6.3-kbp Babesia bigemina DNA insert) was subcloned into the pBluescript phagemid vector and was sequenced by the dideoxy-mediated chain termination method. Two sets of primers were designed for the polymerase chain reaction (PCR) assay. Primer set IA-IB was used to amplify a 278-bp DNA fragment, and primer set IAN-IBN was used to prepare a probe directed to a site within the PCR-amplified target DNA. Digoxigenin-dUTP was incorporated into the probe during the amplification reaction. PCR amplification of target DNA obtained from in vitro-cultured B. bigemina and nucleic acid hybridization of amplified product with the nonradioactive DNA probe showed that a 278-bp fragment could be detected when as little as 100 fg of parasite genomic DNA was used in the assay. A fragment of similar size was amplified from genomic DNAs from several B. bigemina isolates but not from DNAs from Babesia bovis, Anaplasma marginale, or six species of bacteria or bovine leukocytes. Similarly, the PCR product could be detected in DNA samples purified from 200 microliters of blood with a parasitemia of as low as 1 in 10(8) cells and which contained an estimated 30 B. bigemina-infected erythrocytes. By a direct PCR method, B. bigemina DNA was amplified from 20 microliters of packed erythrocytes with a calculated parasitemia of 1 in 10(9) cells. With the analytical sensitivity level of the PCR-DNA probe assay, six cattle with inapparent, 11-month chronic B. bigemina infection were found to be positive. No PCR product was observed in bovine blood samples collected from a splenectomized, A. marginale-infected bovine, a 4-year chronic B. bovis-infected animal, or 20 uninfected cattle from Missouri which were subjected to amplification. The PCR-DNA probe assay was shown to be sensitive in detecting latently infected cattle. The specificity and high analytical sensitivity of the test provide valuable tools for performing large-scale epidemiological studies.

Full text

PDF
2576

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brumbaugh J. A., Middendorf L. R., Grone D. L., Ruth J. L. Continuous, on-line DNA sequencing using oligodeoxynucleotide primers with multiple fluorophores. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5610–5614. doi: 10.1073/pnas.85.15.5610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Buening G. M., Barbet A., Myler P., Mahan S., Nene V., McGuire T. C. Characterization of a repetitive DNA probe for Babesia bigemina. Vet Parasitol. 1990 May;36(1-2):11–20. doi: 10.1016/0304-4017(90)90089-t. [DOI] [PubMed] [Google Scholar]
  3. Callow L. L., McGregor W., Parker R. J., Dalgliesh R. J. Immunity of cattle to Babesia bigemina following its elimination from the host, with observations on antibody levels detected by the indirect fluorescent antibody test. Aust Vet J. 1974 Jan;50(1):12–15. doi: 10.1111/j.1751-0813.1974.tb09361.x. [DOI] [PubMed] [Google Scholar]
  4. Curnow J. A. The use of a slide agglutination test to demonstrate antigenic differences between Babesia bigemina parasites. Aust Vet J. 1973 Jun;49(6):290–293. doi: 10.1111/j.1751-0813.1973.tb06808.x. [DOI] [PubMed] [Google Scholar]
  5. Emanuel J. R. Simple and efficient system for synthesis of non-radioactive nucleic acid hybridization probes using PCR. Nucleic Acids Res. 1991 May 25;19(10):2790–2790. doi: 10.1093/nar/19.10.2790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Figueroa J. V., Chieves L. P., Byers P. E., Frerichs W. M., Buening G. M. Evaluation of a DNA-based probe for the detection of cattle experimentally infected with Babesia bigemina. Ann N Y Acad Sci. 1992 Jun 16;653:131–145. doi: 10.1111/j.1749-6632.1992.tb19636.x. [DOI] [PubMed] [Google Scholar]
  7. Johnston L. A., Leatch G., Jones P. N. The duration of latent infection and functional immunity in droughtmaster and hereford cattle following natural infection with Babesia argentina and Babesia bigemina. Aust Vet J. 1978 Jan;54(1):14–18. doi: 10.1111/j.1751-0813.1978.tb00262.x. [DOI] [PubMed] [Google Scholar]
  8. Johnston L. A., Pearson R. D., Leatch G. Evaluation of an indirect fluorescent antibody test for detecting Babesia argentina infection in cattle. Aust Vet J. 1973 Aug;49(8):373–377. doi: 10.1111/j.1751-0813.1973.tb09344.x. [DOI] [PubMed] [Google Scholar]
  9. Löhr K. F. Immunity to Babesia bigemina in experimentally infected cattle. J Protozool. 1972 Nov;19(4):658–660. doi: 10.1111/j.1550-7408.1972.tb03553.x. [DOI] [PubMed] [Google Scholar]
  10. Mahoney D. F. Bovine babesiosis: preparation and assessment of complement fixing antigens. Exp Parasitol. 1967 Apr;20(2):232–241. doi: 10.1016/0014-4894(67)90043-4. [DOI] [PubMed] [Google Scholar]
  11. Mahoney D. F., Wright I. G., Mirre G. B. Bovine babesiasis: the persistence of immunity to Babesia argentina and B. bigemina in calves (Bos taurus) after naturally acquired infection. Ann Trop Med Parasitol. 1973 Jun;67(2):197–203. doi: 10.1080/00034983.1973.11686877. [DOI] [PubMed] [Google Scholar]
  12. McLaughlin G. L., Edlind T. D., Ihler G. M. Detection of Babesia bovis using DNA hybridization. J Protozool. 1986 Feb;33(1):125–128. doi: 10.1111/j.1550-7408.1986.tb05571.x. [DOI] [PubMed] [Google Scholar]
  13. Mercier B., Gaucher C., Feugeas O., Mazurier C. Direct PCR from whole blood, without DNA extraction. Nucleic Acids Res. 1990 Oct 11;18(19):5908–5908. doi: 10.1093/nar/18.19.5908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Palmer D. A., Buening G. M., Carson C. A. Cryopreservation of Babesia bovis for in vitro cultivation. Parasitology. 1982 Jun;84(Pt 3):567–572. doi: 10.1017/s0031182000052835. [DOI] [PubMed] [Google Scholar]
  15. Persing D. H. Polymerase chain reaction: trenches to benches. J Clin Microbiol. 1991 Jul;29(7):1281–1285. doi: 10.1128/jcm.29.7.1281-1285.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ross J. P., Löhr K. F. Serological diagnosis of Babesia bigemina infection in cattle by the indirect fluorescent antibody test. Res Vet Sci. 1968 Nov;9(6):557–562. [PubMed] [Google Scholar]
  17. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  18. Tirasophon W., Ponglikitmongkol M., Wilairat P., Boonsaeng V., Panyim S. A novel detection of a single Plasmodium falciparum in infected blood. Biochem Biophys Res Commun. 1991 Feb 28;175(1):179–184. doi: 10.1016/s0006-291x(05)81217-3. [DOI] [PubMed] [Google Scholar]
  19. Todorovic R. A. Bovine babesiasis: its diagnosis and control. Am J Vet Res. 1974 Aug;35(8):1045–1052. [PubMed] [Google Scholar]
  20. Vega C. A., Buening G. M., Green T. J., Carson C. A. In vitro cultivation of Babesia bigemina. Am J Vet Res. 1985 Feb;46(2):416–420. [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES