Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1992 Dec;30(12):3089–3094. doi: 10.1128/jcm.30.12.3089-3094.1992

Preliminary evaluation of the ligase chain reaction for specific detection of Neisseria gonorrhoeae.

L Birkenmeyer 1, A S Armstrong 1
PMCID: PMC270593  PMID: 1452689

Abstract

Rapid identification of Neisseria gonorrhoeae in clinical specimens is essential for effective control. Traditional culture requires a minimum of 24 h, and for some specimens harboring gonococci, the gonococci fail to grow or are misidentified. The recently described ligase chain reaction (LCR) is a highly specific and sensitive DNA amplification technique which was evaluated as an alternative to routine culture. Three LCR probe sets were used. Two of the probe sets were directed against the multi-copy Opa genes (Omp-II), while the third set was targeted against the multicopy Pilin genes. Each LCR probe set was evaluated with 260 microorganisms including 136 global isolates of N. gonorrhoeae, 41 isolates of N. meningitidis, and 10 isolates of N. lactamica; 26 nonpathogenic Neisseria strains; and 47 isolates of non-Neisseria species that may reside in clinical specimens. Amplification products were detected by using the IMx LCR format (Abbott Laboratories, Abbott Park, Ill.). Strains of N. gonorrhoeae were assayed at 270 cells per LCR (approximately 6.7 x 10(4) CFU/ml) with the Opa and Pilin probes, producing signals at least 21 and 15 times above background, respectively. In contrast, only background values were observed when testing the probe sets with 124 nongonococcal strains at 1.3 x 10(6) cells per LCR (approximately 3.2 x 10(8) CFU/ml). One hundred urogenital specimens were assayed by LCR, and compared with culture, the three probes were 100% sensitive (8 of 8) and 97.8% specific (90 of 92), resulting in an agreement of 98% (98 of 100). On the basis of the results of these preliminary studies, LCR has the potential to be an accurate and rapid DNA probe assay for the detection of N. gonorrhoeae in clinical specimens.

Full text

PDF
3089

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aho E. L., Dempsey J. A., Hobbs M. M., Klapper D. G., Cannon J. G. Characterization of the opa (class 5) gene family of Neisseria meningitidis. Mol Microbiol. 1991 Jun;5(6):1429–1437. doi: 10.1111/j.1365-2958.1991.tb00789.x. [DOI] [PubMed] [Google Scholar]
  2. Bergström S., Robbins K., Koomey J. M., Swanson J. Piliation control mechanisms in Neisseria gonorrhoeae. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3890–3894. doi: 10.1073/pnas.83.11.3890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bhat K. S., Gibbs C. P., Barrera O., Morrison S. G., Jähnig F., Stern A., Kupsch E. M., Meyer T. F., Swanson J. The opacity proteins of Neisseria gonorrhoeae strain MS11 are encoded by a family of 11 complete genes. Mol Microbiol. 1991 Aug;5(8):1889–1901. doi: 10.1111/j.1365-2958.1991.tb00813.x. [DOI] [PubMed] [Google Scholar]
  4. Bihimaier A., Römling U., Meyer T. F., Tümmler B., Gibbs C. P. Physical and genetic map of the Neisseria gonorrhoeae strain MS11-N198 chromosome. Mol Microbiol. 1991 Oct;5(10):2529–2539. doi: 10.1111/j.1365-2958.1991.tb02099.x. [DOI] [PubMed] [Google Scholar]
  5. Birkenmeyer L. G., Mushahwar I. K. DNA probe amplification methods. J Virol Methods. 1991 Nov-Dec;35(2):117–126. doi: 10.1016/0166-0934(91)90127-l. [DOI] [PubMed] [Google Scholar]
  6. Conde-Glez C. J., Calderón E. Urogenital infection due to meningococcus in men and women. Sex Transm Dis. 1991 Apr-Jun;18(2):72–75. doi: 10.1097/00007435-199118020-00003. [DOI] [PubMed] [Google Scholar]
  7. Connell T. D., Black W. J., Kawula T. H., Barritt D. S., Dempsey J. A., Kverneland K., Jr, Stephenson A., Schepart B. S., Murphy G. L., Cannon J. G. Recombination among protein II genes of Neisseria gonorrhoeae generates new coding sequences and increases structural variability in the protein II family. Mol Microbiol. 1988 Mar;2(2):227–236. doi: 10.1111/j.1365-2958.1988.tb00024.x. [DOI] [PubMed] [Google Scholar]
  8. Copley C. G., Egglestone I. Gonococci without plasmids. Lancet. 1982 May 15;1(8281):1133–1133. doi: 10.1016/s0140-6736(82)92324-8. [DOI] [PubMed] [Google Scholar]
  9. Dempsey J. A., Litaker W., Madhure A., Snodgrass T. L., Cannon J. G. Physical map of the chromosome of Neisseria gonorrhoeae FA1090 with locations of genetic markers, including opa and pil genes. J Bacteriol. 1991 Sep;173(17):5476–5486. doi: 10.1128/jb.173.17.5476-5486.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fiore M., Mitchell J., Doan T., Nelson R., Winter G., Grandone C., Zeng K., Haraden R., Smith J., Harris K. The Abbott IMx automated benchtop immunochemistry analyzer system. Clin Chem. 1988 Sep;34(9):1726–1732. [PubMed] [Google Scholar]
  11. Goodhart M. E., Ogden J., Zaidi A. A., Kraus S. J. Factors affecting the performance of smear and culture tests for the detection of Neisseria gonorrhoeae. Sex Transm Dis. 1982 Apr-Jun;9(2):63–69. doi: 10.1097/00007435-198204000-00002. [DOI] [PubMed] [Google Scholar]
  12. Grubin L., Osborne N. G. Enzyme immunoassay for detection of Neisseria gonorrhoeae from urogenital samples. Obstet Gynecol. 1987 Mar;69(3 Pt 1):350–353. [PubMed] [Google Scholar]
  13. Hagblom P., Segal E., Billyard E., So M. Intragenic recombination leads to pilus antigenic variation in Neisseria gonorrhoeae. Nature. 1985 May 9;315(6015):156–158. doi: 10.1038/315156a0. [DOI] [PubMed] [Google Scholar]
  14. Hagman M., Forslin L., Moi H., Danielsson D. Neisseria meningitidis in specimens from urogenital sites. Is increased awareness necessary? Sex Transm Dis. 1991 Oct-Dec;18(4):228–232. doi: 10.1097/00007435-199110000-00006. [DOI] [PubMed] [Google Scholar]
  15. KISSANE J. M., ROBINS E. The fluorometric measurement of deoxyribonucleic acid in animal tissues with special reference to the central nervous system. J Biol Chem. 1958 Jul;233(1):184–188. [PubMed] [Google Scholar]
  16. Kawula T. H., Aho E. L., Barritt D. S., Klapper D. G., Cannon J. G. Reversible phase variation of expression of Neisseria meningitidis class 5 outer membrane proteins and their relationship to gonococcal proteins II. Infect Immun. 1988 Feb;56(2):380–386. doi: 10.1128/iai.56.2.380-386.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Meyer T. F., Billyard E., Haas R., Storzbach S., So M. Pilus genes of Neisseria gonorrheae: chromosomal organization and DNA sequence. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6110–6114. doi: 10.1073/pnas.81.19.6110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nicolson I. J., Perry A. C., Virji M., Heckels J. E., Saunders J. R. Localization of antibody-binding sites by sequence analysis of cloned pilin genes from Neisseria gonorrhoeae. J Gen Microbiol. 1987 Apr;133(4):825–833. doi: 10.1099/00221287-133-4-825. [DOI] [PubMed] [Google Scholar]
  19. Panke E. S., Yang L. I., Leist P. A., Magevney P., Fry R. J., Lee R. F. Comparison of Gen-Probe DNA probe test and culture for the detection of Neisseria gonorrhoeae in endocervical specimens. J Clin Microbiol. 1991 May;29(5):883–888. doi: 10.1128/jcm.29.5.883-888.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Perry A. C., Nicolson I. J., Saunders J. R. Structural analysis of the pilE region of Neisseria gonorrhoeae P9. Gene. 1987;60(1):85–92. doi: 10.1016/0378-1119(87)90216-2. [DOI] [PubMed] [Google Scholar]
  21. Segal E., Hagblom P., Seifert H. S., So M. Antigenic variation of gonococcal pilus involves assembly of separated silent gene segments. Proc Natl Acad Sci U S A. 1986 Apr;83(7):2177–2181. doi: 10.1073/pnas.83.7.2177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Stamm W. E., Cole B., Fennell C., Bonin P., Armstrong A. S., Herrmann J. E., Holmes K. K. Antigen detection for the diagnosis of gonorrhea. J Clin Microbiol. 1984 Mar;19(3):399–403. doi: 10.1128/jcm.19.3.399-403.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Stern A., Brown M., Nickel P., Meyer T. F. Opacity genes in Neisseria gonorrhoeae: control of phase and antigenic variation. Cell. 1986 Oct 10;47(1):61–71. doi: 10.1016/0092-8674(86)90366-1. [DOI] [PubMed] [Google Scholar]
  24. Stern A., Meyer T. F. Common mechanism controlling phase and antigenic variation in pathogenic neisseriae. Mol Microbiol. 1987 Jul;1(1):5–12. doi: 10.1111/j.1365-2958.1987.tb00520.x. [DOI] [PubMed] [Google Scholar]
  25. Torres M. J., Cano R., Palomares J. C. Evaluation of a DNA probe of plasmid origin for the detection of Neisseria gonorrhoeae in cultures and clinical specimens. Mol Cell Probes. 1991 Feb;5(1):49–54. doi: 10.1016/0890-8508(91)90037-k. [DOI] [PubMed] [Google Scholar]
  26. Totten P. A., Holmes K. K., Handsfield H. H., Knapp J. S., Perine P. L., Falkow S. DNA hybridization technique for the detection of Neisseria gonorrhoeae in men with urethritis. J Infect Dis. 1983 Sep;148(3):462–471. doi: 10.1093/infdis/148.3.462. [DOI] [PubMed] [Google Scholar]
  27. van der Ley P. Three copies of a single protein II-encoding sequence in the genome of Neisseria gonorrhoeae JS3: evidence for gene conversion and gene duplication. Mol Microbiol. 1988 Nov;2(6):797–806. doi: 10.1111/j.1365-2958.1988.tb00091.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES