Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1984 Jun;19(6):763–765. doi: 10.1128/jcm.19.6.763-765.1984

Applications of restriction endonuclease fingerprinting of chromosomal DNA of Neisseria meningitidis.

B Bjorvatn, V Lund, B E Kristiansen, L Korsnes, O Spanne, B Lindqvist
PMCID: PMC271181  PMID: 6088570

Abstract

Restriction endonucleases are bacterial enzymes that cleave DNA at specific sites. The resulting DNA fragments may be separated electrophoretically in gel to form specific restriction patterns. In the present study, the restriction endonuclease method was successfully adapted to the analysis of the chromosomal DNA of Neisseria meningitidis. The endonucleases HindIII and EcoRI provided optimal restriction patterns of ca. 50 well-separated lines. The pattern of each bacterial isolate was characteristic, stable, and reproducible. Despite some general similarity, the restriction patterns of the closely related B15 meningococci were surprisingly heterogeneous.

Full text

PDF
763

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bovre K., Holten E., Vik-Mo H., Brondbo A., Bratlid D., Bjark P., Moe P. J. Neisseria meningitidis infections in Northern Norway: an epidemic in 1974-1975 due mainly to group B organisms. J Infect Dis. 1977 Apr;135(4):669–672. doi: 10.1093/infdis/135.4.669. [DOI] [PubMed] [Google Scholar]
  2. Buchman T. G., Roizman B., Adams G., Stover B. H. Restriction endonuclease fingerprinting of herpes simplex virus DNA: a novel epidemiological tool applied to a nosocomial outbreak. J Infect Dis. 1978 Oct;138(4):488–498. doi: 10.1093/infdis/138.4.488. [DOI] [PubMed] [Google Scholar]
  3. Bøvre K., Gedde-Dahl T. W. Epidemiological patterns of meningococcal disease in Norway 1975-1979. NIPH Ann. 1980 Dec;3(2):9–22. [PubMed] [Google Scholar]
  4. Chandler D. K., Razin S., Stephens E. B., Harasawa R., Barile M. F. Genomic and phenotypic analyses of Mycoplasma pneumoniae strains. Infect Immun. 1982 Nov;38(2):604–609. doi: 10.1128/iai.38.2.604-609.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Frasch C. E., Chapman S. S. Classification of Neisseria meningitidis group B into distinct serotypes. 3. Application of a new bactericidal-inhibition technique to distribution of serotypes among cases and carriers. J Infect Dis. 1973 Feb;127(2):149–154. doi: 10.1093/infdis/127.2.149. [DOI] [PubMed] [Google Scholar]
  6. Frasch C. E., Chapman S. S. Classification of Neisseria meningitidis group B into distinct serotypes. II. Extraction of type-specific antigens for serotyping by precipitin techniques. Infect Immun. 1972 Aug;6(2):127–133. doi: 10.1128/iai.6.2.127-133.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hammer S. M., Buchman T. G., D'Angelo L. J., Karchmer A. W., Roizman B., Hirsch M. S. Temporal cluster of herpes simplex encephalitis: investigation by restriction endonuclease cleavage of viral DNA. J Infect Dis. 1980 Apr;141(4):436–440. doi: 10.1093/infdis/141.4.436. [DOI] [PubMed] [Google Scholar]
  8. Holten E. Serotypes of Neisseria meningitidis isolated from patients in Norway during the first six months of 1978. J Clin Microbiol. 1979 Feb;9(2):186–188. doi: 10.1128/jcm.9.2.186-188.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Inman R. B., Schnös M., Simon L. D., Six E. W., Walker D. H., Jr Some morphological properties of P4 bacteriophage and P4 DNA. Virology. 1971 Apr;44(1):67–72. doi: 10.1016/0042-6822(71)90153-x. [DOI] [PubMed] [Google Scholar]
  10. Kaper J. B., Bradford H. B., Roberts N. C., Falkow S. Molecular epidemiology of Vibrio cholerae in the U.S. Gulf Coast. J Clin Microbiol. 1982 Jul;16(1):129–134. doi: 10.1128/jcm.16.1.129-134.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Markowitz S. M., Veazey J. M., Jr, Macrina F. L., Mayhall C. G., Lamb V. A. Sequential outbreaks of infection due to Klebsiella pneumoniae in a neonatal intensive care unit: implication of a conjugative R plasmid. J Infect Dis. 1980 Jul;142(1):106–112. doi: 10.1093/infdis/142.1.106. [DOI] [PubMed] [Google Scholar]
  12. O'Brien T. F., Hopkins J. D., Gilleece E. S., Medeiros A. A., Kent R. L., Blackburn B. O., Holmes M. B., Reardon J. P., Vergeront J. M., Schell W. L. Molecular epidemiology of antibiotic resistance in salmonella from animals and human beings in the United States. N Engl J Med. 1982 Jul 1;307(1):1–6. doi: 10.1056/NEJM198207013070101. [DOI] [PubMed] [Google Scholar]
  13. Schaberg D. R., Tompkins L. S., Falkow S. Use of agarose gel electrophoresis of plasmid deoxyribonucleic acid to fingerprint gram-negative bacilli. J Clin Microbiol. 1981 Jun;13(6):1105–1108. doi: 10.1128/jcm.13.6.1105-1108.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Southern E. M. Analysis of restriction-fragment patterns from complex deoxyribonucleic acid species. Biochem Soc Symp. 1979;44:37–41. [PubMed] [Google Scholar]
  15. Taylor D. N., Wachsmuth I. K., Shangkuan Y. H., Schmidt E. V., Barrett T. J., Schrader J. S., Scherach C. S., McGee H. B., Feldman R. A., Brenner D. J. Salmonellosis associated with marijuana: a multistate outbreak traced by plasmid fingerprinting. N Engl J Med. 1982 May 27;306(21):1249–1253. doi: 10.1056/NEJM198205273062101. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES