Abstract
The major causative agents of bacterial meningitis, Haemophilus influenzae serogroup B, Neisseria meningitidis serogroups B and C, Klebsiella pneumoniae, Streptococcus pneumoniae, and two types of Escherichia coli, were cultured in a modified chemically defined Catlin medium and in a commercial version of the unmodified Catlin medium. The spent media were extracted under acidic conditions, and electron-capturing derivatives were prepared by derivatization with trichloroethanol or haptafluorobutyric anhydride. The derivatives were analyzed on a gas chromatograph equipped with a frequency-pulsed electron capture detector and a PEP-2 computer. The data obtained from the study show that these organisms can be easily distinguished from each other on the basis of metabolic products detected in either type of medium. Three different metabolic groups were detected within two serogroups of N. meningitidis. The methods are practical, and the new technique should offer clinical laboratories and hospitals a better method for rapid identification of this important group of pathogens.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albritton W. L., Penner S., Slaney L., Brunton J. Biochemical characteristics of Haemophilus influenzae in relationship to source of isolation and antibiotic resistance. J Clin Microbiol. 1978 Jun;7(6):519–523. doi: 10.1128/jcm.7.6.519-523.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alley C. C., Brooks J. B., Kellogg D. S., Jr Electron capture gas-liquid chromatographic-mass spectral identification of acids produced by Neisseria meningitidis in a defined medium. J Clin Microbiol. 1979 Jan;9(1):97–102. doi: 10.1128/jcm.9.1.97-102.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brooks J. B., Craven R. B., Schlossberg D., Alley C. C., Pitts F. M. Possible use of frequency-pulse-modulated electron capture gas-liquid chromatography to identify septic and aseptic causes of pleural effusions. J Clin Microbiol. 1978 Aug;8(2):203–208. doi: 10.1128/jcm.8.2.203-208.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brooks J. B. Detection of bacterial metabolites in spent culture media and body fluids by electron capture gas-liquid chromatography. Adv Chromatogr. 1977;15:1–31. [PubMed] [Google Scholar]
- Brooks J. B., Kellogg D. S., Alley C. C., Short H. B., Handsfield H. H., Huff B. Gas chromatography as a potential means of diagnosing arthritis. I. Differentiation between staphylococcal, streptococcal, gonococcal, and traumatic arthritis. J Infect Dis. 1974 Jun;129(6):660–668. doi: 10.1093/infdis/129.6.660. [DOI] [PubMed] [Google Scholar]
- Brooks J. B., Kellogg D. S., Jr, Choudhary G., Alley C. C., Liddle J. A. Identification of some basic extractable compounds produced by Neisseria gonorrhoeae and Neisseria meningitidis in a defined medium. J Clin Microbiol. 1978 May;7(5):415–418. doi: 10.1128/jcm.7.5.415-418.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brooks J. B., Melton A. R. Electron capture gas-liquid chromatographic study of metabolites produced by some arthritic transudate-associated organisms in vitro and in vivo in rabbit models. J Clin Microbiol. 1978 Oct;8(4):402–409. doi: 10.1128/jcm.8.4.402-409.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Catlin B. W. Nutritional profiles of Neisseria gonorrhoeae, Neisseria meningitidis, and Neisseria lactamica in chemically defined media and the use of growth requirements for gonococcal typing. J Infect Dis. 1973 Aug;128(2):178–194. doi: 10.1093/infdis/128.2.178. [DOI] [PubMed] [Google Scholar]
- Craven R. B., Brooks J. B., Edman D. C., Converse J. D., Greenlee J., Schlossberg D., Furlow T., Gwaltney J. M., Jr, Miner W. F. Rapid diagnosis of lymphocytic meningitis by frequency-pulsed electron capture gas-liquid chromatography: differentiation of tuberculous, cryptococcal, and viral meningitis. J Clin Microbiol. 1977 Jul;6(1):27–32. doi: 10.1128/jcm.6.1.27-32.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eckfeldt J., Ederer G. M., Oetjen R. Counterimmunoelectrophoresis and bacterial meningitis. JAMA. 1978 Feb 13;239(7):615–616. doi: 10.1001/jama.1978.03280340035012. [DOI] [PubMed] [Google Scholar]
- Finch C. A., Wilkinson H. W. Practical considerations in using counterimmunoelectrophoresis to identify the principal causative agents of bacterial meningitis. J Clin Microbiol. 1979 Oct;10(4):519–524. doi: 10.1128/jcm.10.4.519-524.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jorgensen J. H., Lee J. C. Rapid diagnosis of gram-negative bacterial meningitis by the Limulus endotoxin assay. J Clin Microbiol. 1978 Jan;7(1):12–17. doi: 10.1128/jcm.7.1.12-17.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kasper D. L., Winkelhake J. L., Zollinger W. D., Brandt B. L., Artenstein M. S. Immunochemical similarity between polysaccharide antigens of Escherichia coli 07: K1(L):NM and group B Neisseria meningitidis. J Immunol. 1973 Jan;110(1):262–268. [PubMed] [Google Scholar]
- Morse C. D., Brooks J. B., Kellogg D. S., Jr Identification of Neisseria by electron capture gas-liquid chromatography of metabolites in a chemically defined growth medium. J Clin Microbiol. 1977 Nov;6(5):474–481. doi: 10.1128/jcm.6.5.474-481.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ribner B., Keusch G. T., Robbins J. B. Letter: Staphylococcus aureus antigen in cerebrospinal fluid cross-reactive with Haemophilus influenzae type b antiserum. Ann Intern Med. 1975 Sep;83(3):370–371. doi: 10.7326/0003-4819-83-3-370. [DOI] [PubMed] [Google Scholar]