Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1980 Oct;12(4):483–489. doi: 10.1128/jcm.12.4.483-489.1980

Influence of residual moisture and sealing atmosphere on viability of two freeze-dried viral vaccines.

P M Precausta, D Simatos, M Le Pemp, B Devaux, F Kato
PMCID: PMC273620  PMID: 6252243

Abstract

This study demonstrated the complexity of the factors leading to changes in the infectivity titers of freeze-dried canine distemper and poultry infectious bronchitis viral vaccines. The change in moisture content during the storage period was an additional parameter which may influence the infectivity titer. The results emphasized the difficulty of predetermining variations in infectivity titers from the initial residual moisture. The analysis of the variations in infectivity titers during the storage of two vaccines led to the formulation of a hypothesis of the presence of two components of different thermostability. Moreover, the temporary increase in the infectivity titer of infectious bronchitis vaccine stored progressively dissociating during storage concurrent with a progressive inactivation of infectious particles.

Full text

PDF
483

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bervelt E., Kerchove E. Dosage de l'humidité rédiuelle dans les vaccins lyophilisés. J Biol Stand. 1975;3(3):321–330. doi: 10.1016/0092-1157(75)90036-0. [DOI] [PubMed] [Google Scholar]
  2. Caisey P., Balis J. Dosage de l'humidité résidvelle des vaccins lyophilisés par le réactif de Karl Fischer Technique et causes d'erreurs. Rev Elev Med Vet Pays Trop. 1975;28(4):459–462. [PubMed] [Google Scholar]
  3. Cowdery S., Frey M., Orlowski S., Gray A. Stability characteristics of freeze-dried human live virus vaccines. Dev Biol Stand. 1976 Oct;36:297–303. [PubMed] [Google Scholar]
  4. Damjanovic V. Kinetics of thermal death and prediction of the stabilities of freeze-dried streptomycin-dependent live Shigella vaccines. J Biol Stand. 1974 Oct;2(4):297–311. doi: 10.1016/0092-1157(74)90039-0. [DOI] [PubMed] [Google Scholar]
  5. Dayan J., Chaniot S., Netter R. Dosage de l'humidité résiduelle dans les vaccins lyophilisés par chromatographie gazeuse. J Biol Stand. 1975;3(2):171–179. doi: 10.1016/0092-1157(75)90044-x. [DOI] [PubMed] [Google Scholar]
  6. FRY R. M., GREAVES R. I. N. The survival of bacteria during and after drying. J Hyg (Lond) 1951 Jun-Sep;49(2-3):220–246. doi: 10.1017/s0022172400044120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Farley J. J., Drummond J. N. Moisture vapor transmission measurement by gas chromatography. Bull Parenter Drug Assoc. 1976 Jul-Aug;30(4):187–195. [PubMed] [Google Scholar]
  8. Greiff D. Freeze-drying cycles. Dev Biol Stand. 1976 Oct;36:105–115. [PubMed] [Google Scholar]
  9. Greiff D. Protein structure and freeze-drying: the effects of residual moisture and gases. Cryobiology. 1971 Apr;8(2):145–152. doi: 10.1016/0011-2240(71)90022-8. [DOI] [PubMed] [Google Scholar]
  10. Greiff D., Rightsel W. A. Stabilities of dried suspensions of influenza virus sealed in a vacuum or under different gases. Appl Microbiol. 1969 Jun;17(6):830–835. doi: 10.1128/am.17.6.830-835.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Greiff D., Rightsel W. A. Stability of suspensions of influenza virus dried to different contents of residual moisture by sublimation in vacuo. Appl Microbiol. 1968 Jun;16(6):835–840. doi: 10.1128/am.16.6.835-840.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Held H. R., Landi S. Water permeability of elastomers. J Biol Stand. 1977;5(2):111–119. doi: 10.1016/0092-1157(77)90005-1. [DOI] [PubMed] [Google Scholar]
  13. NEI T. FREEZE AND FREEZE-DRYING OF MICROORGANISMS. Cryobiology. 1964 Sep-Oct;51:87–93. doi: 10.1016/0011-2240(64)90026-4. [DOI] [PubMed] [Google Scholar]
  14. Nomura M., Nishimura C., Kitaoka M. [Stability and preservability of freeze-dried small-pox vaccine with different moisture contents]. Jpn J Med Sci Biol. 1965 Oct;18(5):249–256. doi: 10.7883/yoken1952.18.249. [DOI] [PubMed] [Google Scholar]
  15. Pemberton J. R. Critical factors of the vacuum-oven technique which influence the estimation of moisture in veterinary biologics. Dev Biol Stand. 1976 Oct;36:191–199. [PubMed] [Google Scholar]
  16. Redway K. F., Lapage S. P. Effect of carbohydrates and related compounds on the long-term preservation of freeze-dried bacteria. Cryobiology. 1974 Feb;11(1):73–79. doi: 10.1016/0011-2240(74)90040-6. [DOI] [PubMed] [Google Scholar]
  17. Sparkes J. D., Fenje P. The effect of residual moisture in lyophilized smallpox vaccine on its stability at different temperatures. Bull World Health Organ. 1972;46(6):729–734. [PMC free article] [PubMed] [Google Scholar]
  18. Suzuki M. Proceedings: Stability and residual moisture content of dried vaccinia virus. Cryobiology. 1973 Nov;10(5):432–434. doi: 10.1016/0011-2240(73)90071-0. [DOI] [PubMed] [Google Scholar]
  19. Valette L., Stellmann C., Précausta P., Desmettre P., Le Pemp M. Freeze-drying of brucella vaccine strain B 19. Dev Biol Stand. 1976 Oct;36:313–322. [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES