Abstract
The effect of vaccination schedule on the immune response of Macaca mulatta to formalin-inactivated chicken embryo cell culture (CEC)-grown Rickettsia rickettsii vaccine was studied. Schedules consisted of inoculation on day 1 only, on days 1 and 15, on days 1 and 30, on days 1, 8, and 15, or on days 1, 15, and 45. Humoral antibody measured by microagglutination and indirect immunofluorescence and resistance to challenge with 10(4) plaque-forming units of yolk sac-grown R. rickettsii were assessed. Seroconversion was noted in all monkeys after the first dose of vaccine. A second dose administered 8 or 15 days after the primary infection, or a third given 7 or 30 days after the second, produced no long-term effect on antibody titer. Only monkeys given two doses of vaccine at a 30-day interval showed an increase in antibody titer during the period before challenge. Vaccination with one, two, or three doses of CEC vaccine prevented development of rash and rickettsemia after challenge. The two-dose schedules appeared to induce the highest degree of resistance to challenge, as indicated by unaltered hematological parameters and body temperature in monkeys. The one- and three-dose schedules were somewhat less effective, in that some challenged monkeys within each group displayed febrile and leukocyte responses associated with Rocky Mountain spotted fever infection. Our data suggest that administration of two doses of CEC vaccine at 15- or 30-day intervals is the immunization schedule of choice.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Fiset P., Ormsbee R. A., Silberman R., Peacock M., Spielman S. H. A microagglutination technique for detection and measurement of rickettsial antibodies. Acta Virol. 1969 Jan;13(1):60–66. [PubMed] [Google Scholar]
- Kenyon R. H., Canonico P. G., Sammons L. S., Bagley L. R., Pedersen C. E., Jr Antibody response to Rocky Mountain spotted fever. J Clin Microbiol. 1976 May;3(5):513–518. doi: 10.1128/jcm.3.5.513-518.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kenyon R. H., Pedersen C. E., Jr Preparation of Rocky Mountain spotted fever vaccine suitable for human immunization. J Clin Microbiol. 1975 Jun;1(6):500–503. doi: 10.1128/jcm.1.6.500-503.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kenyon R. H., Sammons L. S., Pedersen C. E., Jr Comparison of three rocky mountain spotted fever vaccines. J Clin Microbiol. 1975 Oct;2(4):300–304. doi: 10.1128/jcm.2.4.300-304.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- STOENNER H. G., LACKMAN D. B., BELL E. J. Factors affecting the growth of rickettsias of the spotted fever group in fertile hens' eggs. J Infect Dis. 1962 Mar-Apr;110:121–128. doi: 10.1093/infdis/110.2.121. [DOI] [PubMed] [Google Scholar]
- Sammons L. S., Kenyon R. H., Burger G. T., Pedersen C. E., Jr, Spertzel R. O. Changes in blood serum constituents and hematologic values in Macaca mulatta with Rocky Mountain spotted fever. Am J Vet Res. 1976 Jun;37(6):725–730. [PubMed] [Google Scholar]
- Weinberg E. H., Stakebake J. R., Gerone P. J. Plaque assay for Rickettsia rickettsii. J Bacteriol. 1969 May;98(2):398–402. doi: 10.1128/jb.98.2.398-402.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wike D. A., Burgdorfer W. Plaque formation in tissue cultures by Rickettsia rickettsi isolated directly from whole blood and tick hemolymph. Infect Immun. 1972 Nov;6(5):736–738. doi: 10.1128/iai.6.5.736-738.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
