Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1976 Nov;4(5):394–399. doi: 10.1128/jcm.4.5.394-399.1976

Evaluation of enrichment, storage, and age of blood agar medium in relation to its ability to support growth of anaerobic bacteria.

C W Hanson, W J Martin
PMCID: PMC274486  PMID: 11226

Abstract

By measuring the colony size of a variety of anaerobic bacteria isolated from clinical specimens, an evaluation was made of the benefits derived from the addition of several enrichments to blood agar medium commonly used for the growth of anaerobes. Similar methods were used to study the effects of various storage conditions and age of the medium. The results were compared with those obtained on freshly prepared and enriched blood agar plates as well as commercially available blood agar plates. Freshly prepared and enriched blood agar was found to give substantially larger colonies than could be grown on commercially obtained blood agar plates when both were inoculated and incubated under identical conditions. Storage of plating media under CO2 for periods of up to 72 h had only a minor effect on the growth of the anaerobic bacteria studied, but longer periods of storage under CO2 resulted in a less efficient plating medium. Nonenriched brain heart infusion (BHI) was found to be a better basal medium than Trypticase soy agar (TSA) medium. Colony size on fully enriched BHI blood agar plates was greater than nonenriched BHI greater than nonenriched TSA greater than commercially prepared nonenriched TSA plates. The data suggest that freshness of the plates may be as important as using rich media.

Full text

PDF
394

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brewer J. H., Allgeier D. L. Safe Self-contained Carbon Dioxide-Hydrogen Anaerobic System. Appl Microbiol. 1966 Nov;14(6):985–988. doi: 10.1128/am.14.6.985-988.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ellner P. D., Granato P. A., May C. B. Recovery and identification of anaerobes: a system suitable for the routine clinical laboratory. Appl Microbiol. 1973 Dec;26(6):904–913. doi: 10.1128/am.26.6.904-913.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Martin W. J. Isolation and indentification of anaerobic bacteria in the clinical laboratory. A 2-year experience. Mayo Clin Proc. 1974 May;49(5):300–308. [PubMed] [Google Scholar]
  4. Martin W. J. Practical method for isolation of anerobic bacteria in the clinical laboratory. Appl Microbiol. 1971 Dec;22(6):1168–1171. doi: 10.1128/am.22.6.1168-1171.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Wilkins T. D., Chalgren S. L., Jimenez-Ulate F., Drake C. R., Jr, Johnson J. L. Inhibition of Bacteroides fragilis on blood agar plates and reversal of inhibition by added hemin. J Clin Microbiol. 1976 Mar;3(3):359–363. doi: 10.1128/jcm.3.3.359-363.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES