Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1977 Oct;6(4):348–358. doi: 10.1128/jcm.6.4.348-358.1977

Use of Sodium Polyanetholesulfonate-CaCl2 for Removal of Serum Nonspecific Inhibitors of Rubella Hemagglutination: Comparison with Other Polyanion-Divalent Cation Combinations

Mary L Ellins 1, James B Campbell 1
PMCID: PMC274773  PMID: 199614

Abstract

By using trypsin-treated human type O cells as indicators, we compared the abilities of four polyanion-divalent cation combinations (heparin-MnCl2; high-and low-molecular-weight dextran sulfate-CaCl2; and sodium polyanetholesulfonate [SPS]-CaCl2) for removal of serum non-immunoglobulin (lipoprotein) inhibitors of rubella hemagglutination. The combination of SPS-CaCl2 was found to be the most effective, precipitating completely the pre-β and β-lipoproteins and reducing the α-lipoprotein levels by more than 50%. Hemagglutination patterns after this treatment were clear and stable, and, when normal sera were tested, hemagglutination-inhibition (HI) titers were comparable to those obtained after standard heparin-MnCl2 treatment. High-molecular-weight dextran sulfate-CaCl2 removed serum lipoproteins almost as effectively as SPS-CaCl2. However, problems of nonspecific agglutination and the heavy hemagglutination patterns resulting made this combination unacceptable for routine purposes. Neither low-molecular-weight dextran sulfate-CaCl2 nor heparin-MnCl2 removed the pre-β lipoproteins completely, and occasionally traces of β-lipoprotein also remained after treatment. The presence of pre-β lipoproteins in normal sera after treatment may be of no consequence in the HI test since we have found that the very-low-density lipoprotein fractions obtained by ultracentrifugal methods from normal sera (those corresponding to the pre-β fractions obtained by electrophoresis) had no HI activity. However, very-low-density lipoprotein fractions from all hyperlipemic sera tested had HI activity (titers ranging from 1:16 to 1:1,024) which, in the majority of cases, was not eliminated after heparin-MnCl2 treatment. In every case, treatment with SPS-CaCl2 removed this nonspecific activity completely. Since hyperlipemic sera may occasionally be encountered in routine rubella HI antibody testing, we recommend the use of SPS-CaCl2 rather than heparin-MnCl2 for pretreatment of sera.

Full text

PDF
348

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beaumont J. L., Carlson L. A., Cooper G. R., Fejfar Z., Fredrickson D. S., Strasser T. Classification of hyperlipidaemias and hyperlipoproteinaemias. Bull World Health Organ. 1970;43(6):891–915. [PMC free article] [PubMed] [Google Scholar]
  2. Blom H., Haukenes G. Identification of non-specific serum inhibitors of rubella virus haemagglutination. Med Microbiol Immunol. 1974 Jun 19;159(4):271–277. doi: 10.1007/BF02123736. [DOI] [PubMed] [Google Scholar]
  3. Burstein M., Scholnick H. R. Lipoprotein-polyanion-metal interactions. Adv Lipid Res. 1973;11(0):67–108. [PubMed] [Google Scholar]
  4. Cameron J. L. Lipid abnormalities and acute pancreatitis. Hosp Pract. 1977 Apr;12(4):95–101. doi: 10.1080/21548331.1977.11707115. [DOI] [PubMed] [Google Scholar]
  5. Campbell J. B., Ellins M. L., Tasios C. An inhibitor to rubella hemagglutination present in bovine albumin preparations: its removal by treatment with kaolin. Med Microbiol Immunol. 1977 Jul 18;163(2):83–92. doi: 10.1007/BF02121823. [DOI] [PubMed] [Google Scholar]
  6. Campbell J. B., Romach M., Ellins M. L. Rubella hemagglutination-inhibition test: false-positive reactions in sera contaminated with bacteria. J Clin Microbiol. 1976 Nov;4(5):389–393. doi: 10.1128/jcm.4.5.389-393.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chang T. W., Weinstein L. Studies of nonspecific inhibition of the hemagglutinin of rubella virus and isolation and identification of the inhibitor. Am J Med Sci. 1972 Apr;263(4):233–239. doi: 10.1097/00000441-197204000-00005. [DOI] [PubMed] [Google Scholar]
  8. Frings C. S., Foster L. B., Cohen P. S. Electrophoretic separation of serum lipoproteins in polyacrylamide gel. Clin Chem. 1971 Feb;17(2):111–114. [PubMed] [Google Scholar]
  9. Hatch F. T. Practical methods for plasma lipoprotein analysis. Adv Lipid Res. 1968;6:1–68. [PubMed] [Google Scholar]
  10. Haukenes G. A rubella haemagglutination inhibitor simulating antibody. Acta Pathol Microbiol Scand B Microbiol Immunol. 1973 Dec;81(6):719–723. doi: 10.1111/j.1699-0463.1973.tb02266.x. [DOI] [PubMed] [Google Scholar]
  11. Ho W. K. Serum lipoproteins as inhibitors of haemafflutination by rubella virus. Lipids. 1977 Jan;12(1):85–91. doi: 10.1007/BF02532977. [DOI] [PubMed] [Google Scholar]
  12. Leidel J., Mertens T., Fischer G., Hermann G., Eggers H. J. Untersuchungen zur Otimierung des Rötelnvirus-Hämagglutinationshemmtests. Dtsch Med Wochenschr. 1976 Sep 17;101(38):1387–1389. doi: 10.1055/s-0028-1104278. [DOI] [PubMed] [Google Scholar]
  13. Loos M., Volanakis J. E., Stroud R. M. Mode of interaction of different polyanions with the first (C1, C1), the second (C2) and the fourth (C4) component of complement--III. Inhibition of C4 and C2 binding site(s) on C1s by polyanions. Immunochemistry. 1976 Sep;13(9):789–791. doi: 10.1016/0019-2791(76)90202-0. [DOI] [PubMed] [Google Scholar]
  14. Nelson D. B., Quirin E. P., Inhorn S. L. Improved dextran sulfate-calcium chloride method for the removal of nonspecific inhibitors with modifications for nonspecific agglutinin removal in the rubella hemagglutination inhibition test. Appl Microbiol. 1972 Aug;24(2):264–269. doi: 10.1128/am.24.2.264-269.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nelson D. B., Quirin P., Inhorn S. L. Compatibility of trypsin-modified human erythrocytes in the rubella hemagglutination-inhibition test employing three serum treatment procedures. Appl Microbiol. 1974 Apr;27(4):767–770. doi: 10.1128/am.27.4.767-770.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Quirin E. P., Nelson D. B., Inhorn S. L. Use of trypsin-modified human erythrocytes in rubella hemagglutination-inhibition testing. Appl Microbiol. 1972 Sep;24(3):353–357. doi: 10.1128/am.24.3.353-357.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Shortridge K. F., Ho W. K. Comparison of the activities in inhibition of haemagglutination by different togaviruses for human serum lipoproteins and their constituents. J Gen Virol. 1976 Dec;33(3):523–527. doi: 10.1099/0022-1317-33-3-523. [DOI] [PubMed] [Google Scholar]
  18. Shortridge K. F., Ho W. K. Human serum lipoproteins as inhibitors of haemagglutination for selected togaviruses. J Gen Virol. 1974 Apr;23(1):113–116. doi: 10.1099/0022-1317-23-1-113. [DOI] [PubMed] [Google Scholar]
  19. Stewart G. L., Parkman P. D., Hopps H. E., Douglas R. D., Hamilton J. P., Meyer H. M., Jr Rubella-virus hemagglutination-inhibition test. N Engl J Med. 1967 Mar 9;276(10):554–557. doi: 10.1056/NEJM196703092761006. [DOI] [PubMed] [Google Scholar]
  20. Traub W. H., Kleber I. Inactivation of classical and alternative pathway-activated bactericidal activity of human serum by sodium polyanetholsulfonate. J Clin Microbiol. 1977 Mar;5(3):278–284. doi: 10.1128/jcm.5.3.278-284.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES