Skip to main content
BMC Research Notes logoLink to BMC Research Notes
. 2009 Sep 14;2:182. doi: 10.1186/1756-0500-2-182

Update on comparative genome mapping between Malus and Pyrus

Jean-Marc Celton 1,2, David Chagné 2, Stuart D Tustin 3, Shingo Terakami 4, Chikako Nishitani 4, Toshiya Yamamoto 4, Susan E Gardiner 2,
PMCID: PMC2749866  PMID: 19747407

Abstract

Background

Comparative genome mapping determines the linkage between homologous genes of related taxa. It has already been used in plants to characterize agronomically important genes in lesser studied species, using information from better studied species. In the Maloideae sub-family, which includes fruit species such as apple, pear, loquat and quince, genome co-linearity has been suggested between the genera Malus and Pyrus; however map comparisons are incomplete to date.

Findings

Genetic maps for the apple rootstocks 'Malling 9' ('M.9') (Malus × domestica) and 'Robusta 5' ('R5') (Malus × robusta), and pear cultivars 'Bartlett' and 'La France' (Pyrus communis) were constructed using Simple Sequence Repeat (SSR) markers developed from both species, including a new set of 73 pear Expressed Sequence Tag (EST) SSR markers. Integrated genetic maps for apple and pear were then constructed using 87 and 131 SSR markers in common, respectively.

The genetic maps were aligned using 102 markers in common, including 64 pear SSR markers and 38 apple SSR markers. Of these 102 markers, 90 anchor markers showed complete co-linearity between the two genomes.

Conclusion

Our alignment of the genetic maps of two Malus cultivars of differing species origin with two Pyrus communis cultivars confirms the ready transferability of SSR markers from one genus to the other and supports a high level of co-linearity within the sub-family Maloideae between the genomes of Malus and Pyrus.

Findings

Comparative genomics involves the assessment of the degree of genomic conservation between species to enable the transfer of genetic information, such as the position of major genes, quantitative trait loci (QTL), and candidate genes, in order to validate their role. Practically, comparative genome mapping determines the linkage between homologous genes of related taxa by aligning genome maps using orthologous molecular markers, which can greatly assist in genetic analysis of less-studied species. It is often measured by the degree of synteny, that is, the conservation of gene content, and co-linearity, which represents the conservation of gene order between conserved genomic regions. The first example of genome comparison in plants was made between tomato and potato and used conserved restricted fragment length polymorphism (RFLP) probes [1] to reveal a high degree of co-linearity between these species.

The Maloideae sub-family includes fruit species such as apple, pear, loquat and quince. Apple (Malus × domestica) and pear (Pyrus species) are major temperate fruit crops that have been cultivated in Europe and Asia for at least 2,000 to 3,000 years [2]. Molecular markers linked to a number of agronomically important traits, such as resistance to pests and diseases, tree architecture, and fruit quality, have been identified in both apple [3] and pear [4]. Their identical chromosome number (2n = 2x = 34) and similar genome size (apple 1.57 pg/2C [5]; pear 1.11 pg/2C) [6], as well as their supposed recent divergence date (33.9 to 55.8 million years ago [7]) suggests that their genomes might be highly co-linear. When co-linearity between Malus and Pyrus was examined by comparing maps of the European pears (Pyrus communis) 'Bartlett' and 'La France', and the Japanese pear (Pyrus pyrifolia) 'Housui' with those of apple cultivars (Malus × domestica) 'Fiesta' and 'Discovery' [8] using 66 transferable apple simple sequence repeat (SSR) loci, all the pear linkage groups were aligned to the apple consensus linkage groups with at least one marker in common [9]. These results showed that positions of SSR loci are well conserved between apple and pear, suggesting that partial co-linearity exists between the genera. A study by [10] reported that more than 100 apple SSR markers could be positioned on pear genetic linkage maps. [11] described the mapping of six pear SSR loci on the linkage maps of apples 'Fiesta' and 'Discovery', and their location in homologous linkage groups. This was confirmed in a later study based on a larger set of pear SSR markers mapped in a 'Malling 9' × 'Robusta 5' ('M.9' × 'R5') apple rootstock population [12].

Here we report on a detailed comparison of the apple and pear genomes using a new set of transferable SSR markers developed from pear coding sequences.

Methods

Plant material

The genetic maps that were used as framework maps for positioning the new markers have previously been described. Construction of the genetic map of the European pear cultivars 'La France' and 'Bartlett' is described in [9]. The apple rootstock genetic linkage maps constructed in 'M.9' (Malus × domestica) and 'R5' (Malus × robusta) are described in [12]. The new SSR markers were screened over 60 F1 individuals from the 'M.9' × 'R5' population, consisting of the bin mapping set [12] of 14 plants together with 46 additional seedlings.

SSR markers

Seventy-three new SSR markers developed from pear EST were tested for their amplification and segregation in the 'M.9' × 'R5' apple population. These markers are prefixed by TsuENH and their PCR primer sequence and accession of the EST are given in Table 1. PCR amplifications were performed as described in [13] with the modifications described in [12]. PCR fragments were separated as described in [9] and [12] for pear and apple, respectively.

Table 1.

List of pear EST-based SSR markers tested in apple.

SSR locus accession Location on pear
consensus map
Location on
apple
consensus map
Forward primer (5'-3') Reverse primer (5'-3')
TsuENH001 AB450689 LG2 LG2 AAAGACGGCATTGACTGGATAGA gtttcttGATGCAAAGACTTTCGCCTATCT

TsuENH004 AB450692 LG4, 12 LG4 CGCATTAAAGTCTGGCTTTCTTC gtttcttGAATTGGCAGAGAGATTGAGTGG

TsuENH008 AB450696 LG9 LG13 CTGAGGTCTCATTCGGTGATTCT gtttcttCCTTCTCTGCTTTCTTCTTCACG

TsuENH011 AB450698 LG6, 14 LG6 CGCTTATCCGTTAAACTTCA gtttcttCAACGACAGTTCGAATAGGA

TsuENH016 AB450701 LG15 LG15 TCATTTCATGGACTCTCAATCTCC gtttcttCGAGGAGTCTGTCTGCGTCT

TsuENH022 AB450705 LG16 LG16 CCAATTCATCGAAGTTTACATAGGG gtttcttGGCCAAAGTGCATGAGATGTAGT

TsuENH023 AB450706 LG3 LG3 TCTTCTTCACAGGTCACAACAGC gtttcttCTATGCGCTGCTTCTTGGTAGTC

TsuENH031 AB450711 LG14 LG14 CATTTCCTTAGCTCCCTCCAGTT gtttcttGAACCTTCCTCTTCCCATCACTT

TsuENH032 AB450712 LG14 LG14 AACTGGAGGGAGCTAAGGAAATG gtttcttCATCAAACAAAACTAGCCGAACC

TsuENH033 AB450713 LG17 LG17 CCTGAGGTTATTGACCCAAAAGA gtttcttGGTGGATACTCACTCAGTTGGAAA

TsuENH034 AB450714 LG8 LG8 GCCCCCAATATTTTCCCATTAT gtttcttGTTGGTGTTTGAGTCAACGTGAG

TsuENH042 AB450718 LG13, 16 LG16 AAAGCCGTACATTAGGCAAACC gtttcttAAAACTAGAACAGGCAGCCACAG

TsuENH043 AB450719 LG10 LG10 CATCTGCGTCCGGCAAAC gtttcttGCCCCCTGATATTCGTGGAT

TsuENH046 AB450722 LG6 LG6 GGTCATCACCCACTTAAAAACCA gtttcttGTGCCCTGAAGTAATTGAGATGG

TsuENH049 AB450724 LG1 LG1 CATCAGCCTACGAGCACATACAC gtttcttAGATTACGGCAACAGCAACAGAT

TsuENH052 AB450726 LG13, LG16 CCCAGCAGCCTCCTAATCAATA gtttcttTAGTTGTAGTCCTGCCCAAGTCC

TsuENH058 AB450730 LG14 LG14 AGAAGAAGGATAAGAAGAAGGATGG gtttcttGTAACGAAAAGGAAACAGGACTTG

TsuENH060 AB450732 LG10 ATCTCCACCCAAGAAACCTTACC gtttcttGGGGGTGAGGAATAGATGTAACC

TsuENH062 AB450733 LG2 LG2 ACTCAGATCGTACGCAGAACAAA gtttcttCGATAAAGATCGATAATCCTCATGC

TsuENH066 AB450736 LG13 GTGGTGGAGGTGCGTATTGAC gtttcttCGAGGAAAAGTGCGACTCGT

TsuENH068 AB450738 LG5 CCAATTTTCTCTTCCTCCCTGTT gtttcttTTACAGTTATTGCCGAAGCCAAG

TsuENH076 AB450743 LG10 CATTAATACGCTGCTGTTTCTGC gtttcttACTTGAATTGGGGTAGGGATTGT

TsuENH079 AB450745 LG16 LG13 GCGGCTTCTTGGGAGAAGGT gtttcttGCATGCTCCTTTTGACAGCCTAC

TsuENH081 AB450747 LG13 GCTCTCCTCTTCTTCTCCCACTC gtttcttCCACCCTCGTCAAAATCAGAGTA

TsuENH082 AB450748 LG11 CACCAGTACTCCTGGAGGGTTTC gtttcttGTGCTCCTGCAACATTTTCTCC

TsuENH083 AB450749 LG11 LG11 ACTCTCCGCAAAACAATGTCGTA gtttcttTGTGAGAGTTTGAGGAGGAGAGC

TsuENH086 AB450751 LG5 LG5 CTCTGTTCTGCTTCGATTCTGCT gtttcttGTCCACGTTCACCATTTTTCAGT

TsuENH093 AB450757 LG15 LG8, LG15 GTGGAGATTTTCCGAGTCAAATG gtttcttAATAAGACTGCTGAGGGAATCCA

TsuENH096 AB450759 LG15 LG8 AGTGAGAGAGAGAGGCCTTGGTT gtttcttGCTCTTGCTCTGTCTTCGAAATG

EST: expressed sequence tag. SSR: single sequence repeat. LG: linkage group.

Linkage analysis and map integration

The new EST-based SSR markers were positioned on the parental apple and pear genetic maps using JoinMap v3.0 software [14] with a minimum LOD score of 5.0 for grouping using the Kosambi function. Integrated consensus genetic maps were constructed by merging the 'M.9' and 'R5' datasets for apple, and the 'La France' and 'Bartlett' datasets for pear, using the "combine" function of JoinMap v3.0. This merging method is based on the calculation of mean recombination frequencies and combined LOD scores. Graphical representations of the maps were drawn using MapChart v2.0 [15]. For the integration of the female and male maps, SSR markers in common among homologous linkage groups were used for the analysis, and all apple SSR markers mapped on pear, as well as all pear SSR markers mapped on apple, were included. Other types of markers, such as amplified fragment length polymorphisms (AFLP), single nucleotide polymorphisms (SNP), sequence characterized amplified regions (SCAR), and isozymes were removed from the map, except when located in large gaps between SSR markers, or at the extreme end of a linkage group.

Results

Pear EST-SSR polymorphism

All 73 pear SSR markers developed from pear expressed sequence tags (EST) amplified a PCR product when tested on apple and 29 (40%) were polymorphic in the 'M.9' × 'R5' population (Table 1). Two markers, TsuENH052 and TsuENH093, amplified two loci in apple. Nineteen and 22 pear EST-SSR markers were mapped on 'M.9' and 'R5', respectively, bringing the total number of pear markers mapped on 'M.9' to 51 and 'R5' to 61 [12]. The integrated consensus 'M.9' × 'R5' map contained a total of 96 SSR loci derived from 90 primer pairs developed from either pear genomic DNA or EST.

Genetic map integration and comparison

Integrated consensus maps for apple ('M.9' and 'R5') and pear ('La France' and 'Bartlett') were constructed using 87 and 131 markers in common between the respective parents of the mapping populations. The 'M.9' × 'R5' population generated a map of 1,230 cM, whereas the integrated map of pear was shorter, at 1,146 cM.

The alignment of the integrated pear and apple maps was performed using 102 SSR markers in common (Additional file 1). Of these 102 markers, 90 (53 pear and 37 apple SSR) mapped at similar locations on homologous linkage groups in apple and pear, and three mapped in what are considered to be homoeologous linkage groups (i.e. LG 13 and LG 16; Figure 1). Eight SSR markers in common between apple and pear were mapped in non-homologous and non-homoeologous linkage groups (Table 2).

Figure 1.

Figure 1

Alignment of pear and apple linkage groups (LG) 13 and 16 showing inter-specific co-linearity and intra-specific LG homeology. Alignment of the apple (M.9 R5) and pear (B LF) consensus genetic maps. SSR markers in common between the linkage groups are linked to each other with a line and are presented in color. SSR markers developed from apple sequences are in green while SSR markers developed from pear sequences are in red. M.9: 'Malling 9'. R5: 'Robusta 5'; B: 'Bartlett'. LF: 'La France'. SSR: single sequence repeat.

Table 2.

SSR markers mapping in non-homologous and unknown homoeologous linkage groups in apple and pear

Apple LG Pear LG
CH-Vf1 1 10

NH041a 5/10 7

NH027a 6 15

NB104a 9 12

NH045 11 10

TsuENH008 13 9

NB111a 15 11

NH013a 17 1

SR: single sequence repeat. LG: linkage group.

Discussion

Apple and pear genome synteny

Alignment of the genetic linkage maps made it possible to validate a high degree of co-linearity between the apple and pear genomes (Additional file 1). All pear linkage groups could be successfully aligned to the 'M.9' × 'R5' consensus map by at least one SSR marker. The whole of the pear LG 8 and LG 15 could be aligned to their apple homologues using five and six SSR markers, respectively. Other pear linkage groups, such as LG 2, LG 4, LG 10, LG 14 and LG 16 were partially aligned to the apple consensus map (Additional file 1). Other portions of the genomes, such as LG 7, the top of LG 3 and LG 6, and the bottom of LG 12 and LG 14 still remain incompletely aligned, and these should become the focus of future research aimed at aligning the complete apple and pear genomes at the level of genetic markers.

In most instances, the order and distances between individual markers were similar for apple and pear, suggesting the presence of regions that are highly conserved between the two genomes. Some SSR markers demonstrated multi-locus amplification across the two genera, such as CH05c06, NH044b, NB133a, TsuENH042, TsuENH079 and TsuENH052, that mapped on both LG 13 and LG 16 in both apple and pear (Figure 1). A few apparent inversions in marker order can be observed in Additional file 1: (i) LG 1, KA4b is above TsuENH049 in pear; (ii) LG 2, TsuENH062 is above BGT23b in pear; (iii) LG 9, CH05c07 and CH01f03b are inverted in pear with respect to apple; (iv) LG 11, CH04h02 and TsuENH083 are inverted in pear; (v) LG 12, NH207a is above NZ28f04 in pear. These apparent inversions may be a consequence of the relatively small number of individuals used to map these markers, 55 to 63 individuals in the pear population, and 60 individuals for apple. The number of progeny individuals genotyped in the mapping populations will need to be increased in future studies in order to validate these possible marker inversions. Overall, a high level of co-linearity between apple and pear genetic maps was confirmed.

As shown in Table 2, eight SSR markers mapped to non-homologous and possible uncharacterized homoeologous linkage groups in apple and pear. Fragments obtained from PCR amplification of four loci (NH013a, NH045a, NB104a and TsuENH008) using apple DNA were cloned and sequenced (data not shown). Their sequences were checked for the presence of a SSR motif and then compared to the original pear sequence when available. The amplification products obtained in apple using NH013a, NH045a and TsuENH008 contained a SSR motif, whereas NB104a did not. The sequence for pear and apple NH013a and NH045a were highly similar, except at the level of the SSR motif, which was shorter for apple than pear for both loci. The apparent change in map location does not correspond to unspecific PCR amplification, but could have resulted from small regions of genome re-organization in apple and pear. However, the current density of markers in common between the two integrated maps presented in this study does not allow such an interpretation of the results for the present.

Genome synteny in the Maloideae

Extensive comparative mapping studies in plant families such as Solanaceae, Poaceae and Brassicaceae have consistently indicated that genome evolution within a family consists mainly of limited chromosome rearrangements, leading to the conservation of large chromosome fragments. Similar results have already been found in the Rosaceae within the genus Prunus [16,17], and have resulted in the complete alignment of the peach and apricot genomes [18]. Within the Maloideae, the results of our study confirm the high level of co-linearity between Malus and Pyrus genomes proposed by [2]. It is possible that further comparative mapping studies among other members of the Maloideae, such as loquat and quince, will demonstrate that all members of this family should be considered as a single genetic system. SSR markers from Malus have been used to construct the first genetic linkage map of loquat (Eriobotrya japonica) [19] and to conduct a diversity study in quince (Cydonia oblonga) [20].

These findings could be the precursor to the development of a set of genetic markers common to all members of the Maloideae. Markers with multi-locus amplification across two genera, such as observed for CH05c06, NH044b, NB133a, TsuENH042, TsuENH079 and TsuENH052 that mapped on homeologous linkage groups LG 13 and LG 16 in both apple and pear (Figure 1), would be invaluable for this purpose. A comprehensive marker set would enable a more efficient identification of loci for disease resistance and quality traits using comparative genome mapping across the Maloideae.

Conclusion

We have extended the list of SSR markers used for comparative genome mapping in the Maloideae, specifically for Malus and Pyrus. As the apple whole genome sequence will be available soon, we propose that apple should be used as the model for species in the Maloideae and that genetic information can be inferred in the other species by comparison of their genetic maps with that of apple. Furthermore, we suggest that this approach may be extended to include other members of the Rosaceae, such as Prunus, Rubus and Rosa.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

JMC tested and screened the pear SSR in apple; performed the genetic mapping analysis and map comparison, designed these experiments and prepared the manuscript. DC contributed to the experiments and the preparation of the manuscript. SDT provided plant material for the apple ('M.9' × 'R5') mapping population. ST, CN and TY developed the pear SSR markers and the reference maps for pear (B LF). SEG was project leader. All authors have read and approved the manuscript.

Supplementary Material

Additional file 1

Alignment of the 17 linkage groups (LG) of apple and pear. The figure provided represents the alignment of the apple (M.9 R5) and pear (B LF) consensus genetic maps. SSR markers in common between the maps are linked to each other with a black line and are presented in color. SSR markers developed from apple sequences are in green while SSR markers developed from pear sequences are in red. M.9: 'Malling 9'. R5: 'Robusta 5'; B: 'Bartlett'. LF: 'La France'. SSR: single sequence repeat.

Click here for file (72.9KB, pdf)

Contributor Information

Jean-Marc Celton, Email: jcelton@mail.biotech.uwc.ac.za.

David Chagné, Email: DChagne@hortresearch.co.nz.

Stuart D Tustin, Email: STustin@hortresearch.co.nz.

Shingo Terakami, Email: terakami@affrc.go.jp.

Chikako Nishitani, Email: cnishi@affrc.go.jp.

Toshiya Yamamoto, Email: toshiya@affrc.go.jp.

Susan E Gardiner, Email: SGardiner@hortresearch.co.nz.

Acknowledgements

This worked was funded by a grant (contract number PREV0401) from the New Zealand Foundation for Research, Science and Technology, and Prevar™ Limited, HortResearch internal funding and by a grant from the Ministry of Agriculture, Forestry and Fisheries of Japan (Genomics for Agricultural Innovation, DD-4040).

We thank Dr VGM Bus, JM Bushakra and RV Espley for helpful editing of the manuscript.

References

  1. Bonierbale MW, Plaisted RL, Tanksley SD. RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics. 1988;2(4):1095–1103. doi: 10.1093/genetics/120.4.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Yamamoto T, Kimura T, Saito T, Kotobuki K, Matsuta N, Liebhard R, Gessler C, Weg E Van de, Hayashi T. Genetic linkage maps of Japanese and European pears aligned to the apple consensus map. Acta Horticulturae. 2004;2:51–56. [Google Scholar]
  3. Gardiner SE, Bus VGM, Rusholme RL, Chagné D, Rikkerink EHA. In: Fruit and Nuts. Kole C, editor. Vol. 2. Springer, Berlin; 2007. Genome mapping and molecular breeding in plants; pp. 1–62. [Google Scholar]
  4. Itai A. In: Fruit and Nuts. Kole C, editor. Vol. 2. Springer, Berlin; 2007. Genome mapping and molecular breeding in plants; pp. 157–170. [Google Scholar]
  5. Tatum TC, Stepanovic S, Biradar DP, Rayburn AL, Korban SS. Variation in nuclear DNA content in Malus species and cultivated apples. Genome. 2005;2:924–930. doi: 10.1139/g05-033. [DOI] [PubMed] [Google Scholar]
  6. Arumanagathan K, Earle ED. Nuclear DNA content of some important plant species. Plant Mol Biol Rep. 1991;2:229–241. doi: 10.1007/BF02672073. [DOI] [Google Scholar]
  7. Wolfe JA, Wehr W. Rosaceous Chamaebatiaria -like foliage from the paleogene of western North America. Aliso. 1988;2:177–200. [Google Scholar]
  8. Liebhard R, Koller B, Gianfranceschi L, Gessler C. Creating a saturated reference map for the apple (Malus × domestica Borkh.) genome. Theor Appl Genet. 2003;2:1497–1508. doi: 10.1007/s00122-003-1209-0. [DOI] [PubMed] [Google Scholar]
  9. Yamamoto T, Kimura T, Terakami S, Nishitani C, Sawamura Y, Saito T, Kotobuki K, Hayashi T. Integrated genetic linkage maps for pear based on SSR and AFLP markers. Breeding Science. 2007;2:321–329. doi: 10.1270/jsbbs.57.321. [DOI] [Google Scholar]
  10. Pierantoni L, Cho K-H, Shin I-S, Chiodini R, Tartarini S, Dondini L, Kang S-J, Sansavini S. Characterisation and transferability of apple SSRs to two European pear F1 populations. Theoretical and Applied Genetics. 2004;2:1519–1524. doi: 10.1007/s00122-004-1775-9. [DOI] [PubMed] [Google Scholar]
  11. Silfverberg-Dilworth E, Matasci CL, Weg WE Van de, Van Kaauwen MPW, Walser M, Kodde LP, Soglio V, Gianfranceschi L, Durel CE, Costa F. et al. Microsatellite markers spanning the apple (Malus × domestica Borkh.) genome. Tree Genetics and Genomes. 2006;2(4):202–224. doi: 10.1007/s11295-006-0045-1. [DOI] [Google Scholar]
  12. Celton J-M, Tustin DS, Chagné D, Gardiner SE. Construction of a dense genetic linkage map for apple rootstocks using SSRs developed from Malus ESTs and Pyrus genomic sequences. Tree Genetics and Genomes. 2009;2:93–107. doi: 10.1007/s11295-008-0171-z. [DOI] [Google Scholar]
  13. Gianfranceschi L, Seglias N, Tarchini R, Komjanc M, Gessler C. Simple sequence repeats for the genetic analysis of apple. Theoretical and Applied Genetics. 1998;2(8):1069–1076. doi: 10.1007/s001220050841. [DOI] [Google Scholar]
  14. Van Ooijen JW, Voorrips RE. JoinMapR 3.0: Software for the calculation of genetic linkage maps. Wageningen, The Netherlands. 1998.
  15. Voorrips RE. MapChart version 2.0: windows software for the graphical presentation of linkage maps and QTLs. Plant Research International, Wageningen, The Netherlands. 1998.
  16. Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldere F, Cosson P, Howad W, Arus P. Comparative mapping and marker-assisted selection in Rosaceae fruit crops. PNAS. 2004;2(26):9891–9896. doi: 10.1073/pnas.0307937101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Vilanova S, Sargent D, Arus P, Amparo M. Synteny conservation between two distantly-related Rosaceae genomes: Prunus (the stone fruits) and Fragaria (the strawberry) BMC Plant Biology. 2008;2:67. doi: 10.1186/1471-2229-8-67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Dondini L, Lain O, Geuna F, Banfi R, Gaiotti F, Tartarini S, Bassi D, Testolin R. Development of a new SSR-based linkage map in apricot and analysis of synteny with existing Prunus maps. Tree Genetics and Genomes. 2007;2:239–249. doi: 10.1007/s11295-006-0059-8. [DOI] [Google Scholar]
  19. Gisbert AD, Martinez-Calvo J, Llacer G, Badenes ML, Romero C. Development of two loquat [Eriobotrya japonica (Thunb.) Lindl.] linkage maps based on AFLPs and SSR markers from different Rosaceae species. Molecular Breeding. 2009;2:523–538. doi: 10.1007/s11032-008-9253-8. [DOI] [Google Scholar]
  20. Yamamoto T, Kimura T, Soejima J, Sanada T, Ban Y, Hayashi T. Identification of quince varieties using SSR markers developed from pear and apple. Breeding Science. 2004;2(3):239–244. doi: 10.1270/jsbbs.54.239. [DOI] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Additional file 1

Alignment of the 17 linkage groups (LG) of apple and pear. The figure provided represents the alignment of the apple (M.9 R5) and pear (B LF) consensus genetic maps. SSR markers in common between the maps are linked to each other with a black line and are presented in color. SSR markers developed from apple sequences are in green while SSR markers developed from pear sequences are in red. M.9: 'Malling 9'. R5: 'Robusta 5'; B: 'Bartlett'. LF: 'La France'. SSR: single sequence repeat.

Click here for file (72.9KB, pdf)

Articles from BMC Research Notes are provided here courtesy of BMC

RESOURCES