Skip to main content
AAPS PharmSciTech logoLink to AAPS PharmSciTech
. 2005 Aug 10;6(1):E22–E30. doi: 10.1208/pt060106

Preparation and characterization of chitosan and trimethyl-chitosanmodified poly-(ε-caprolactone) nanoparticles as DNA carriers

Jochen Haas 1, M N V Ravi Kumar 2, Gerrit Borchard 3, Udo Bakowsky 4, Claus-Michael Lehr 1,
PMCID: PMC2750407  PMID: 16353959

Abstract

The purpose of this research was to prepare poly-(ε-caprolactone) (PCL) particles by an emulsion-diffusion-evaporation method using a blend of poly-(vinyl alcohol) and chitosan derivatives as stabilizers. The chitosan derivatives used were chitosan hydrochloride and trimethyl chitosans (TMC) with varying degrees of quaternization. Particle characteristics-size, zeta potential, surface morphology, cytotoxicity, and transfection efficiency-were investigated. The developed method yields PCL nanoparticles in the size range of 250 to 300 nm with a positive surface charge (2.5 to 6.8 mV). The cytotoxicity was found to be moderate and virtually independent of the stabilizers' concentration with the exception of the highly quaternized TMC (degree of substitution 66%) being significantly more toxic. In immobilization experiments with gel electrophoresis, it could be shown that these cationic nanoparticles (NP) form stable complexes with DNA at a NP:DNA ratio of 3:1. These nanoplexes showed a significantly higher transfection efficiency on COS-1 cells than naked DNA.

Keywords: biocompatible; cytotoxicity; gene transfer, nanoparticles; trimethyl chitosan; AFM

Full Text

The Full Text of this article is available as a PDF (3.7 MB).

References

  • 1.Crystal RG. The gene as drug. Nat Med. 1995;1:15–17. doi: 10.1038/nm0195-15. [DOI] [PubMed] [Google Scholar]
  • 2.Florence AT, Sakthivel T, Toth I. Orral uptake and translocation of a polylysine dendrimer with a lipid surface. J Control Release. 2000;65:253–259. doi: 10.1016/S0168-3659(99)00237-0. [DOI] [PubMed] [Google Scholar]
  • 3.Ramaswamy C, Sakthivel T, Wilderspin AF, Florence AT. Dendriplexes and their characterization. Int J Pharm. 2003;254:17–21. doi: 10.1016/S0378-5173(02)00670-1. [DOI] [PubMed] [Google Scholar]
  • 4.Pouton CW, Lucas P, Thomas BJ, Uduehi AN, Milroy DA, Moss SH. Polycation-DNA complexes for gene delivery: a comparison of the biopharmaceutical properties of cationic polypeptides and cationic lipids. J Control Release. 1998;53:289–299. doi: 10.1016/S0168-3659(98)00015-7. [DOI] [PubMed] [Google Scholar]
  • 5.Ramsay E, Gumbleton M. Polylysine and polyornithine gene transfer complexes: a study of complex stability and cellular uptake as a basis for their differential in-vitro transfection efficiency. J Drug Target. 2002;10:1–9. doi: 10.1080/10611860290007487. [DOI] [PubMed] [Google Scholar]
  • 6.Oupicky D, Konak C, Ulbrich K, Wolfert MA, Seymour LW. DNA delivery systems based on complexes of DNA with synthetic polycations and their copolymers. J Control Release. 2000;65:149–171. doi: 10.1016/S0168-3659(99)00249-7. [DOI] [PubMed] [Google Scholar]
  • 7.Wagner E, Plank C, Zatloukal K, Cotten M, Birnstiel ML. Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferrin-polylysine-DNA complexes: toward a synthetic virus-like gene-transfer vehicle. Proc Natl Acad Sci U S A. 1992;89:7934–7938. doi: 10.1073/pnas.89.17.7934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Fischer D, Bieber T, Li Y, Elsasser HP, Kissel T. A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm Res. 1999;16:1273–1279. doi: 10.1023/A:1014861900478. [DOI] [PubMed] [Google Scholar]
  • 9.Kunath K, Harpe A, Fischer D, et al. Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J Control Release. 2003;89:113–125. doi: 10.1016/S0168-3659(03)00076-2. [DOI] [PubMed] [Google Scholar]
  • 10.Smith JG, Wedeking T, Vernachio JH, Way H, Niven RW. Characterization and in vivo testing of a heterogeneous cationic lipid-DNA formulation. Pharm Res. 1998;15:1356–1363. doi: 10.1023/A:1011937218418. [DOI] [PubMed] [Google Scholar]
  • 11.Olbrich C, Bakowsky U, Lehr CM, Muller RH, Kneuer C. Cationic solid-lipid nanoparticles can efficiently bind and transfect plasmid DNA. J Control Release. 2001;77:345–355. doi: 10.1016/S0168-3659(01)00506-5. [DOI] [PubMed] [Google Scholar]
  • 12.Oberle V, Bakowsky U, Zuhorn IS, Hoekstra D. Lipoplex formation under equilibrium conditions reveals a three step mechanism. Biophys J. 2000;79:1447–1454. doi: 10.1016/S0006-3495(00)76396-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Mahato RI, Kawabata K, Nomura T, Takakura Y, Hashida M. Physicochemical and pharmacokinetic characteristics of plasmid DNA/cationic liposome complexes. J Pharm Sci. 1995;84:1267–1271. doi: 10.1002/jps.2600841102. [DOI] [PubMed] [Google Scholar]
  • 14.Farhood H, Serbina N, Huang L. The role of dioleyl phosphatidylethanolamine in cationic liposome mediated gene transfer. Biochim Biophys Acta. 1995;1235:289–295. doi: 10.1016/0005-2736(95)80016-9. [DOI] [PubMed] [Google Scholar]
  • 15.Sternberg B, Hong K, Zheng W, Papahadjopoulos D. Ultrastructural characterization of cationic liposome-DNA complexes showing enhanced stability in serum and high transfection activity in vivo. Biochim Biophys Acta. 1998;1375:23–35. doi: 10.1016/S0005-2736(98)00129-1. [DOI] [PubMed] [Google Scholar]
  • 16.Meyer O, Kirpotin D, Hong K, Sternberg B, Park JW, Woodle MC, Papahadjopoulos D. Cationic liposomes coated with polyethylene glycol as carriers for oligonucleotides. J Biol Chem. 1998;273:15621–15627. doi: 10.1074/jbc.273.25.15621. [DOI] [PubMed] [Google Scholar]
  • 17.Behr JP, Demeneix B, Loeffler JP, Perez-Mutul J. Efficient gene transfer into mammalian primary endocrine cells with lipopolyaminecoated DNA. Proc Natl Acad Sci U S A. 1989;86:6982–6986. doi: 10.1073/pnas.86.18.6982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Torchilin VP, Levchenko TS, Rammohan R, Volodina N, Papahadjopoulos-Sternberg B, D'Souza GG. Cell transfection in vitro and in vivo with nontoxic TAT peptide-liposome-DNA complexes. Proc Natl Acad Sci U S A. 2003;100:1972–1977. doi: 10.1073/pnas.0435906100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Cui Z, Mumper RJ. Plasmid DNA-entrapped nanoparticles engineered from microemulsion precursors: in vitro and in vivo evaluation. Bioconjug Chem. 2002;13:1319–1327. doi: 10.1021/bc0255586. [DOI] [PubMed] [Google Scholar]
  • 20.Kneuer C, Sameti M, Haltner EG, Schiestel T, Schirra H, Schmidt H, Lehr CM. Silica nanoparticles modified with aminosilanes as carriers for plasmid DNA. Int J Pharm. 2000;196:257–261. doi: 10.1016/S0378-5173(99)00435-4. [DOI] [PubMed] [Google Scholar]
  • 21.Kneuer C, Sameti M, Bakowsky U, et al. A nonviral DNA delivery system based on surface modified silica-nanoparticles can efficiently transfect cells in vitro. Bioconjug Chem. 2000;11:926–932. doi: 10.1021/bc0000637. [DOI] [PubMed] [Google Scholar]
  • 22.Ravi Kumar MNV, Bakowsky U, Lehr C-M. Preparation and characterization of cationic PLGA nanospheres as DNA carriers. Biomaterials. 2004;25:1771–1777. doi: 10.1016/j.biomaterials.2003.08.069. [DOI] [PubMed] [Google Scholar]
  • 23.Ravi Kumar MNV, Mohapatra SS, Kong X, Jena PK, Bakowsky ULehr C-M. Cationic poly(lactide-co-glycolide) nanoparticles as efficient in vivo gene transfection agents. J Nanosci Nanotechnol. 2004;4:990–994. doi: 10.1166/jnn.2004.130. [DOI] [PubMed] [Google Scholar]
  • 24.Leong KW, Mao HQ, Truong VL, Roy K, Walsh SM, August JT. DNA-polycation nanospheres as non-viral gene delivery vehicles. J Control Release. 1998;53:183–193. doi: 10.1016/S0168-3659(97)00252-6. [DOI] [PubMed] [Google Scholar]
  • 25.Capan Y, Woo BH, Gebrekidan S, Ahmed S, DeLuca PP. Preparation and characterization of poly (D,L-lactide-co-glycolide) microspheres for controlled release of poly(L-lysine) complexed plasmid DNA. Pharm Res. 1999;16:509–513. doi: 10.1023/A:1018862827426. [DOI] [PubMed] [Google Scholar]
  • 26.Ravi Kumar MNV, Sameti M, Mohapatra SS, Kong X, Lockey RF, Bakowsky U, Lindenblatt G, Schmidt H, Lehr CM. Cationic silica nanoparticles as gene carriers: synthesis, characterization and transfection efficiency in vitro in vivo. J Nanosci Nanotechnol. 2004;4:876–881. doi: 10.1166/jnn.2004.120. [DOI] [PubMed] [Google Scholar]
  • 27.Florea BI, Meaney C, Junginger HE, Borchard G. Transfection efficiency and toxicity of polyethylenimine in differentiated Calu-3 and nondifferentiated COS-1 cell cultures. AAPS PharmSci. 2003;4:E12–E12. doi: 10.1208/ps040312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Merdan T, Kopecek J, Kissel T. Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv Drug Deliv Rev. 2002;54:715–758. doi: 10.1016/S0169-409X(02)00046-7. [DOI] [PubMed] [Google Scholar]

Articles from AAPS PharmSciTech are provided here courtesy of American Association of Pharmaceutical Scientists

RESOURCES