Abstract
The present study is aimed at developing and exploring the use of pectin in suppression of agglomeration of ciprofloxacinloaded human serum albumin (HSA) nanoparticles. The HSA-pectin nanoparticles loaded with ciprofloxacin were prepared by the pH-coacervation method, and various physicochemical parameters such as particle size, morphology, ζ-potential, electrolyte-induced flocculation, pH-dependent ζ-potential, drug loading, in vitro drug release, and stability of nanoparticles, were evaluated. The size of the HSA-pectin nanoparticles (F3) was found to be 180 to 290 nm. The HSA nanoparticles were modified with pectin when the critical flocculation concentration of nanoparticles in Na2SO4 solution was increased from 0.3 M to 0.9 M. The isoelectric points of the formed nanoparticles were found to be relatively lower between pH values 3 and 6. Pectin may be used as a pharmaceutical additive for the suppression of particle agglomeration in HSA nanoparticles, and the effect may be attributed to the pectin segments present on the surface of nanoparticles.
Keywords: Ciprofloxacin, human serum albumin, pectin, nanoparticles, agglomeration
Full Text
The Full Text of this article is available as a PDF (234.5 KB).
References
- 1.Davis SS, Illum L. Colloidal delivery systems, opportunities and challenges. In: Tomlinson E, Davis SS, editors. Site-Specific Drug Delivery: Cell Biology, Medical and Pharmaceutical Aspects. Chichester, UK: Wiley; 1986. pp. 931–931. [Google Scholar]
- 2.Moghimi SM, Porter CJH, Muir IS, Illum L, Davis SS. Non-phagocytic uptake of intravenously injected microspheres in rat spleen: influence of particle size and hydrophilic coating. Biochem Biophys Res Commun. 1991;177:861–866. doi: 10.1016/0006-291X(91)91869-E. [DOI] [PubMed] [Google Scholar]
- 3.Illium L, Davis SS, Wilson CG, Thomas NW, Frier M, Hardy JG. Blood clearance and organ deposition of intravenously administered colloidal particles. The effects of particle size, nature and shape. Int J Pharm. 1982;12:135–146. doi: 10.1016/0378-5173(82)90113-2. [DOI] [Google Scholar]
- 4.Artursson P. The fate of microparticulate drug carriers after intravenous administration. In: Illum L, Davis SS, editors. Polymers in Controlled Drug Delivery. Bristol, UK: Wright; 1987. pp. 15–24. [Google Scholar]
- 5.Lin W, Martin C, Garnett ES, Davis SS, Illum L. Preparation and in vitro characterization of HSA-mPEG nanoparticles. Int J Pharm. 1999;189:161–170. doi: 10.1016/S0378-5173(99)00253-7. [DOI] [PubMed] [Google Scholar]
- 6.Harashima H, Sakata K, Funato K, Kiwada H. Enhanced hepatic uptake of liposomes through complement activation depending on the size of liposomes. Pharm Res. 1994;11:402–406. doi: 10.1023/A:1018965121222. [DOI] [PubMed] [Google Scholar]
- 7.Romero EL, Morilla MJ, Regts J, Koning GA, Scherphof GL. On the mechanism of hepatic transendothelial passage of large liposomes. FEBS Lett. 1999;448:193–196. doi: 10.1016/S0014-5793(99)00364-6. [DOI] [PubMed] [Google Scholar]
- 8.Gallo JM, Hung CT, Perrier DG. Analysis of albumin microsphere preparation. Int J Pharm. 1984;22:63–74. doi: 10.1016/0378-5173(84)90046-2. [DOI] [Google Scholar]
- 9.Müller BG, Leuenberger H, Kissel T. Albumin nanospheres as carriers for passive drug targeting: an optimized manufacturing technique. Pharm Res. 2007;13:32–37. doi: 10.1023/A:1016064930502. [DOI] [PubMed] [Google Scholar]
- 10.Lin W, Coombes AGA, Davies MC, Davis SS, Illum L. Preparation of sub-100 nm human serum albumin nanospheres using a pH-coacervation method. J Drug Target. 1993;1:237–243. doi: 10.3109/10611869308996081. [DOI] [PubMed] [Google Scholar]
- 11.Langer K, Balthasar S, Vogel V, Dinauer N, von Briesen H, Schubert D. Optimization of the preparation process for human serum albumin (HSA) nanoparticles. Int J Pharm. 2003;257:169–180. doi: 10.1016/S0378-5173(03)00134-0. [DOI] [PubMed] [Google Scholar]
- 12.Bozdag S, Dillen K, Vandervoort J, Ludwig A. The effect of freeze-drying with different cryoprotectants and gamma-irradiation sterilization on the characteristics of ciprofloxacin HCl-loaded poly(D,L-lactide-glycolide) nanoparticles. J Pharm Pharmacol. 2005;57:699–707. doi: 10.1211/0022357056145. [DOI] [PubMed] [Google Scholar]
- 13.Chen CG, Lin W, Coombes AG, Davis SS, Illum L. Preparation of human serum albumin microspheres by novel acetone-heat denaturation method. J Microencapsul. 1994;4:395–407. doi: 10.3109/02652049409034257. [DOI] [PubMed] [Google Scholar]
- 14.Yi YM, Yang TY, Pan WM. Preparation and distribution of 5-fluorouracil125I sodium alginate-bovine serum albumin nanoparticle. World J Gastroenterol. 1999;5:57–60. doi: 10.3748/wjg.v5.i1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Rodriguez Cruz MS, Gonzalez Alonso I, Sánchez-Navarro A, Sayalero Marinero ML. In vitro study of the interaction between quinolones and polyvalent cations. Pharm Acta Helv. 1999;73:237–245. doi: 10.1016/S0031-6865(98)00029-6. [DOI] [PubMed] [Google Scholar]
- 16.Christensen SH. Pectins. In: Glicksman M, editor. Food Hydrocolloids. Boca Raton, FL: CRC Press; 1986. pp. 223–224. [Google Scholar]
- 17.Pszczola DE. Pectin's functionality finds use in fat-replacer market. Food Technol. 1991;45:116–117. [Google Scholar]
- 18.Szu SC, Bystricky S, Hinojosa-Ahumada M, Egan W, Robbins JB. Synthesis and some immunologic properties of an O-acetyl pectin [poly(1→4)-α-D-GlapA]-protein conjugate as a vaccine for typhoid fever. Infect Immun. 1994;62:5545–5549. doi: 10.1128/iai.62.12.5545-5549.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Plaschina IG, Braudo EE, Tolstoguzov VB. Circular-dichroism studies of pectin solutions. Carbohydr Res. 1978;60:1–8. doi: 10.1016/S0008-6215(00)83459-X. [DOI] [Google Scholar]
- 20.Florence AT, Attwood D. Physicochemical Principles of Pharmacy. London, UK: Macmillan; 1988. [Google Scholar]
- 21.Lin W, Coombes AG, Garnett MC, et al. Preparation of sterically stabilized human serum albumin nanospheres using a novel Dextranox-mPEG crosslinking agent. Pharm Res. 1994;11:1588–1592. doi: 10.1023/A:1018957704209. [DOI] [PubMed] [Google Scholar]
- 22.Stolnik S, Dunn SE, Gamett MC. Surface modification of poly(lactide-co-glycolide) nanospheres by biodegradable poly(lactide)-poly(ethylene glycol) copolymers. Pharm Res. 1994;11:1800–1808. doi: 10.1023/A:1018931820564. [DOI] [PubMed] [Google Scholar]