Skip to main content
AAPS PharmSciTech logoLink to AAPS PharmSciTech
. 2006 Jun 23;8(1):E56–E62. doi: 10.1208/pt0801008

Evaluation of microcrystalline cellulose prepared from sisal fibers as a tablet excipient: A technical note

Nitin A Bhimte 1,, Pralhad T Tayade 2,
PMCID: PMC2750443  PMID: 17915806

Conclusion

The above data demonstrated that MCC derived from sisal fibers could be an industrially feasible alternative for currently used MCCs as diluent and disintegrant for both immediate-release as well as sustained-release oral solid dosage forms.

Keywords: Microcrystalline cellulose, sisal fibers, disintegrant, diluent, scanning electron microscopy, x-ray diffractometry, dissolution

Full Text

The Full Text of this article is available as a PDF (330.6 KB).

Footnotes

Publshed: February 2, 2007

References

  • 1.Battista OA. Microcrystalline Polymer Sciences. New York, NY: McGraw Hill; 1975. [Google Scholar]
  • 2.Richman MD, Fox CD, Shangraw RF. Preparation and stability of glyceryl trinitrate sublingual tablets by direct compression. J Pharm Sci. 1965;54:447–451. doi: 10.1002/jps.2600540323. [DOI] [PubMed] [Google Scholar]
  • 3.Reier CE, Shangraw RF. Microcrystalline cellulose in tabletting. J Pharm Sci. 1966;55:510–515. doi: 10.1002/jps.2600550513. [DOI] [Google Scholar]
  • 4.Durand HW, Fleck EJ, Raynor GE, inventors. Microcrystalline cellulose compositions Co-dried with hydrocelluloses US patent 3 537 058. October 27, 1970.
  • 5.Battista OA, Smith PA. Microcrystalline cellulose. Ind Eng Chem. 1962;54:20–29. doi: 10.1021/ie50633a003. [DOI] [Google Scholar]
  • 6.Baruah PP, Bhattacharya GC, Chaliha BP. Microcrystalline Cellulose from Cotton.Indian pulp and paper. 2000;971–976.
  • 7.Nagavi BG, Mithal BM. Proceedings of the International Seminar on Management of Environmental Problems in the Pulp and Paper Industry; January 3–5; New Delhi, India. Delhi, India: Sheth Publication; 1982. pp. 46–48. [Google Scholar]
  • 8.Anand SM, Chawla JS. Microcrystalline cellulose from hosiery waste. Res Ind. 1981;26:227–235. [Google Scholar]
  • 9.Nagavi BG, Mithal BM, Chawla JS. Microcrystalline cellulose from corncobs. Res Ind. 1989;28:277–280. [Google Scholar]
  • 10.Jain AK, Dixit VK, Varma KC. Preparation of microcrystalline cellulose from cereal straw and its evaluation as a tablet excipient. Ind J Pharm Sci. 1983;3:83–85. [Google Scholar]
  • 11.Doelker E, Mordier D, Iten H, Humbert-Droz P. Tabletting properties of sixteen microcrystalline celluloses. Drug Dev Ind Pharm. 1987;13:1847–1875. doi: 10.3109/03639048709068696. [DOI] [Google Scholar]
  • 12.Lerk CF, Bolhilis GK, DeBoer AH. Effect of microcrystalline celluloses on liquid penetration in and disintegration of directly compresible tablets. J Pharm Sci. 1979;68:205–211. doi: 10.1002/jps.2600680222. [DOI] [PubMed] [Google Scholar]
  • 13.Carr RL. Evaluating flow properties of solids. Chem Eng. 1965;18:163–166. [Google Scholar]
  • 14.Carr RL. Classifying flow properties of solids. Chem Eng. 1965;1:69–74. [Google Scholar]
  • 15.Segal LC, Martin AE, Conrad CM. An empirical method for estimating the degree of crystallinity of native cellulose using x-ray diffractometer. Textile Res J. 1959;29:786–794. [Google Scholar]
  • 16.United States Pharmacopeia and Formulary (USP 29-NF 24): Microcrystalline Cellulose. Rockville, MD: United States Pharmacopeia Convention; 2006:3306–3307.
  • 17.Mihranyan A, Llagostera A, Karmhag R, Stromme M, Ek R. Moisture sorption by cellulose powders of varying crystallinity. Int J Pharm. 2004;269:433–442. doi: 10.1016/j.ijpharm.2003.09.030. [DOI] [PubMed] [Google Scholar]
  • 18.McKenna A, McCaffery DF. Effect of particle size on compaction mechanism and tensile strength of the tablets. J Pharm Pharmacol. 1982;34:347–351. doi: 10.1111/j.2042-7158.1982.tb04727.x. [DOI] [PubMed] [Google Scholar]
  • 19.Shah MA, Wilson RG. Some effects of humidity and heat on the tabletting properties of microcrystalline cellulose formulations. J Pharm Sci. 1968;57:181–186. doi: 10.1002/jps.2600570141. [DOI] [PubMed] [Google Scholar]
  • 20.Czeisler JL, Perlman KP. Diluents. In: Swarbrick TJ, Boylan JC, editors. Encyclopedia of Pharmaceutical Technology. New York, NY: Marcel Dekker Inc; 1991. pp. 37–83. [Google Scholar]
  • 21.Nagel MN, Peck GE. Investigating the effects of excipients on the powder flow characteristics of theophylline anhydrous powder formulations. Drug Dev Ind Pharm. 2003;29:277–287. doi: 10.1081/DDC-120018201. [DOI] [PubMed] [Google Scholar]
  • 22.Wenzel U, Kala H. The effect of dehydration loss of tablet excipient on energy-distant diagrams and on tablets. Pharmazie. 1984;39:819–825. [PubMed] [Google Scholar]
  • 23.Khan KA, Rhodes CT. Water-sorption properties of tablet disintegrants. J Pharm Sci. 1975;64:447–451. doi: 10.1002/jps.2600640321. [DOI] [PubMed] [Google Scholar]
  • 24.Nagomi N, Nagai T, Fukuoka E, Sanobe T. Disintegration of aspirin tablets containing potato starch and microcrystalline cellulose. Chem Pharm Bull (Tokyo). 1969;17:1450–1458. doi: 10.1248/cpb.17.1450. [DOI] [PubMed] [Google Scholar]

Articles from AAPS PharmSciTech are provided here courtesy of American Association of Pharmaceutical Scientists

RESOURCES