Skip to main content
AAPS PharmSciTech logoLink to AAPS PharmSciTech
. 2004 Sep 8;5(4):36–45. doi: 10.1208/pt050456

Stabilized nanoparticles of phytosterol by rapid expansion from supercritical solution into aqueous solution

Michael Türk 1,, Ralph Lietzow 1
PMCID: PMC2750481  PMID: 15760053

Abstract

The basic objective of this work was to form stable suspensions of submicron particles of phytosterol, a water-insoluble drug, by rapid expansion of supercritical solution into aqueous solution (RESSAS). A supercritical phytosterol/CO2 mixture was expanded into an aqueous surfactant solution. In these experiments 4 different surfactants were used to impede growth and agglomeration of the submicron particles resulting from collisions in the free jet. The concentration of the drug in the aqueous surfactant solution was determined by high-performance liquid chromatography, while the size of the stabilized particles was measured by dynamic light scattering. Submicron phytosterol particles (<500 nm) were stabilized and in most cases a bimodal particle size distribution was obtained. Depending on surfactant and concentration of the surfactant solution, suspensions with drug concentrations up to 17 g/dm3 could be achieved, which is 2 orders of magnitude higher than the equilibrium solubility of phytosterol. Long-term stability studies indicate modest particle growth over 12 months. Thus, the results demonstrate that RESSAS can be a promising process for stabilizing submicron particles in aqueous solutions.

Keywords: supercritical fluid, submicron particles, water-insoluble drug, phytosterol, bioavailability

Full Text

The Full Text of this article is available as a PDF (276.3 KB).

References

  • 1.Müller RH, Böhm BHL, Grau MJ. Nanosuspensionen— Formulierungen für schwerlösliche Arzneistoffe mit geringer Bioverfügbarkeit 1. Mitteilung: Herstellung und Eigenschaften, 2. Mitteilung: Stabilität, biopharmazeutische Aspekte, mögliche Arzneiformen und Zulassungsfragen. Pharm Ind. 1999;61:74–78. [Google Scholar]
  • 2.Pace SN, Pace GW, Parikh I, Mishra AK. Novel injectable formulations of insoluble drugs. J Pharm Technol. 1993;23:116–134. [Google Scholar]
  • 3.Subramaniam B, Rajewski RA, Snavely K. Pharmaceutical processing with supercritical carbon dioxide. J Pharm Sci. 1997;86(8):885–890. doi: 10.1021/js9700661. [DOI] [PubMed] [Google Scholar]
  • 4.Young TJ, Mawson S, Johnston KP, Henriksen IB, Pace GW, Mishra AK. Rapid expansion from supercritical to aqueous solution to produce submicron suspensions of water-insoluble drugs. Biotechnol Prog. 2000;16(3):402–407. doi: 10.1021/bp000032q. [DOI] [PubMed] [Google Scholar]
  • 5.Kikic I, Lora M, Bertucco A. A thermodynamic analysis of three-phase equilibria in binary and ternary systems for applications in Rapid Expansion of a supercritical Solution (RESS), Particles from Gas-Saturated Solutions (PGSS), and Supercritical Antisolvent (SAS) Ind Eng Chem Res. 1997;36:5507–5515. doi: 10.1021/ie970376u. [DOI] [Google Scholar]
  • 6.Jung J, Perrut M. Particle design using supercritical fluids: literature and patent survey. J Supercrit Fluids. 2001;20:179–219. doi: 10.1016/S0896-8446(01)00064-X. [DOI] [Google Scholar]
  • 7.Türk M. Formation of small organic particles by RESS: experimental and theoretical investigations. J Supercrit Fluids. 1999;15(1):79–89. doi: 10.1016/S0896-8446(98)00131-4. [DOI] [Google Scholar]
  • 8.Helfgen B, Türk M, Schaber K. Theoretical and experimental investigations of the micronization of organic solutes by rapid expansion of supercritical solutions. J Powder Techn. 2000;110:22–28. doi: 10.1016/S0032-5910(99)00264-8. [DOI] [Google Scholar]
  • 9.Hils P, Helfgen B, Türk M, Schaber K, Martin H-J, Schmidt PC, Wahl, MA. Nanoscale particles for pharmaceutical purpose by rapid expansion of supercritical solutions (RESS); Part I: Experiments and Modelling. Tome 1: Particle Design, Materials and Reactions. Proceedings of the 7th Meeting on Supercritical Fluids; December 6–8, 2000; Antibes, France.
  • 10.Türk M. Erzeugung von organischen Nanopartikeln mit über-kritischen Fluiden. Karlsruhe, Germany: Fakultät für Chemieingenieurwesen und Verfahrenstechnik, Universität Karlsruhe (TH); 2001. [Google Scholar]
  • 11.Türk M, Hils P, Helfgen B, Schaber K, Martin H-J, Wahl MA. Micronisation of pharmaceutical substances by Rapid Expansion of Supercritical Solutions (RESS). Proceedings of the 2nd International Meeting on High Pressure Chemical Engineering; March 7–9, 2001; Hamburg-Harburg, Germany.
  • 12.Türk M, Hils P, Helfgen B, Schaber K, Martin H-J, Wahl MA. Micronization of pharmaceutical substances by Rapid Expansion of Supercritical Solutions (RESS): a promising method to improve the bioavailability of poorly soluble pharmaceutical agents. J Supercrit Fluids. 2002;22(1):75–84. doi: 10.1016/S0896-8446(01)00109-7. [DOI] [Google Scholar]
  • 13.Türk M, Hils P, Helfgen B, Lietzow R, Schaber K. Micronization of pharmaceutical substances by Rapid Expansion of Supercritical Solutions (RESS): experiments and modelling. Part Part Syst Charact. 2002;19:327–335. doi: 10.1002/1521-4117(200211)19:5&#x0003c;327::AID-PPSC327&#x0003e;3.0.CO;2-V. [DOI] [Google Scholar]
  • 14.Türk M, Lietzow R, Hils P, Schaber K. Stabilization of pharmaceutical substances by spraying a supercritical solution into aqueous solutions. In: Bertucco A, editor. Chemical Engineering Transactions. Mailand, Italy: AIDIC; 2002. pp. 621–626. [Google Scholar]
  • 15.Debenedetti PG. Homogeneous nucleation in supercritical fluids. AICHE J. 1990;36:1289–1298. doi: 10.1002/aic.690360902. [DOI] [Google Scholar]
  • 16.Tom JW, Debenedetti PG. Particle formation with supercritical fluids-A Review. J Aerosol Sci. 1991;22:555–584. doi: 10.1016/0021-8502(91)90013-8. [DOI] [Google Scholar]
  • 17.Helfgen B. Simulation der Strömung und der Partikelbildung bei der schnellen Expansion überkritischer Lösungen (RESS) zur Herstellung pharmazeutischer Nanopartikeln. Karlsruhe, Germany: Universität Karlsruhe (TH); 2001. [Google Scholar]
  • 18.Helfgen B, Türk M, Schaber K. Hydrodynamic and aerosol modelling of the Rapid Expansion of Supercritical Solutions (RESS-Process) Supercrit Fluids. 2003;26(3):225–242. doi: 10.1016/S0896-8446(02)00159-6. [DOI] [Google Scholar]
  • 19.Young TJ, Johnston KP, Pace GW, Mishra AK. Phospholipid-stabilized nanoparticles of cyclosporine A by rapid expansion from supercritical to aqueous solution. AAPS PharmSciTech. 2004;1:E11–E11. doi: 10.1208/pt050111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Türk M. Herstellung organischer Nanopartikeln und deren Stabilisierung in wässrigen Lösungen (RESSAS) CIT. 2003;75(6):792–795. doi: 10.1002/cite.200390151. [DOI] [Google Scholar]
  • 21.Türk M, Lietzow R. RESSAS: A promising technology for improving solubility of poorly water soluble pharmaceuticals. Proceedings of the International Congress for Particle Technology, PARTEC 2004; March 16–18, 2004; Nürnberg, Germany.
  • 22.Türk M, Lietzow R. RESSAS: A promising technology for improving solubility of poorly water-soluble pharmaceuticals. Proceedings of the 9th Meeting on SCF's; June 13–16, 2004; Trieste, Italy.
  • 23.Pegel KH. The importance of sitosterol and sitosterolin in human and animal nutritions. S Afr J Sci. 1997;93:263–268. [Google Scholar]
  • 24.Cihlar S. Mikronisierung organischer Feststoffe durch schnelle Expansion überkritischer Lösungen. Karlsruhe, Germany: Universität Karlsruhe (TH); 2000. [Google Scholar]
  • 25.Türk M, Wahl MA. Utilization of supercritical fluid technology for the preparation of innovative carriers loaded with nanoparticular drugs. Proceedings of the International Congress for Particle Technology, PARTEC 2004; March 16–18, 2004; Nürnberg, Germany.
  • 26.Peng DY, Robinson DB. A new two-constant equation of state. Ind Eng Chem Fundam. 1976;15:59–63. doi: 10.1021/i160057a011. [DOI] [Google Scholar]
  • 27.Diefenbacher A. Experimentelle Bestimmung von Phasengleichgewichten zur Anwendung überkritischer Fluide als Lösungsmittel. Karlsruhe, Germany: Universität Karlsruhe (TH); 2001. [Google Scholar]
  • 28.Diefenbacher A, Türk M. Phase equilibria of organic solid solutes and supercritical fluids with respect to the RESS-Process. J Supercrit Fluids. 2002;22(3):175–184. doi: 10.1016/S0896-8446(01)00123-1. [DOI] [Google Scholar]
  • 29.Türk M, Upper G, Steurenthaler M. Investigation of the phase behavior of low volatile substances and supercritical fluids with regard to particle formation processes. Proceedings of the 6th International Symposium on Supercritical Fluids; April 28–30, 2003; Versailles, France.
  • 30.Türk M, Steurenthaler M, Upper G. Investigation of the phase Behavior of pure solids or binary solid mixtures in supercritical carbon dioxide. Proceedings of the 9th Meeting on SCF's; June 13–16, 2004; Trieste, Italy.

Articles from AAPS PharmSciTech are provided here courtesy of American Association of Pharmaceutical Scientists

RESOURCES