Skip to main content
AAPS PharmSciTech logoLink to AAPS PharmSciTech
. 2004 Sep 23;5(4):129–137. doi: 10.1208/pt050468

Nanoparticles containing ketoprofen and acrylic polymers prepared by an aerosol flow reactor method

Hannele Eerikäinen 1, Leena Peltonen 3, Janne Raula 1, Jouni Hirvonen 3, Esko I Kauppinen 1,4,
PMCID: PMC2750493  PMID: 15760065

Abstract

The purpose of this study was to outline the effects of interactions between a model drug and various acrylic polymers on the physical properties of nanoparticles prepared by an aerosol flow reactor method. The amount of model drug, ketoprofen, in the nanoparticles was varied, and the nanoparticles were analyzed for particle size distribution, particle morphology, thermal properties, IR spectroscopy, and drug release. The nanoparticles produced were spherical, amorphous, and had a matrix-type structure. Ketoprofen crystallization was observed when the amount of drug in Eudragit L nanoparticles was more than 33% (wt/wt). For Eudragit E and Eudragit RS nanoparticles, the drug acted as an effective plasticizer resulting in lowering of the glass transition of the polymer. Two factors affected the preparation of nanoparticles by the aerosol flow reactor method, namely, the solubility of the drug in the polymer matrix and the thermal properties of the resulting drug-polymer matrix.

Keywords: nanoparticles, ketoprofen, aerosol, polymer, Eudragit

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

References

  • 1.Kreuter J. Nanoparticles. In: Swarbrick J, Boylan J C, editors. Encyclopedia of Pharmaceutical Technology. New York, NY: Marcel Dekker; 1994. pp. 165–190. [Google Scholar]
  • 2.Couvreur P, Dubernet C, Puisieux F. Controlled drug delivery with nanoparticles: current possibilities and future trends. Eur J Pharm Biopharm. 1995;41:2–13. [Google Scholar]
  • 3.Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2002;54:631–651. doi: 10.1016/S0169-409X(02)00044-3. [DOI] [PubMed] [Google Scholar]
  • 4.Peltonen L, Koistinen P, Karjalainen M, Häkkinen A, Hirvonen J. The effect of cosolvents on the formulation of nanoparticles from low-molecular-weight poly(1)lactide. AAPS PharmSciTech. 2002;3:E32–E32. doi: 10.1208/pt030432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Damgé C, Michel C, Aprahamian M, Couvreur P, Devissaguet JP. Nanocapsules as carriers for oral peptide delivery. J Control Release. 1990;13:233–239. doi: 10.1016/0168-3659(90)90013-J. [DOI] [Google Scholar]
  • 6.Damgé C, Vranckx H, Balschmidt P, Couvreur P. Poly(alkyl cyanoacrylate) nanospheres for oral administration of insulin. J Pharm Sci. 1997;86:1403–1409. doi: 10.1021/js970124i. [DOI] [PubMed] [Google Scholar]
  • 7.Chen X, Young TJ, Sarkari M, Williams RO, Johnston KP. Preparation of cyclosporine A nanoparticles by evaporative precipitation into aqueous solution. Int J Pharm. 2002;242:3–14. doi: 10.1016/S0378-5173(02)00147-3. [DOI] [PubMed] [Google Scholar]
  • 8.Eerikäinen H, Kauppinen EI. Preparation of polymeric nanoparticles containing corticosteroid by a novel aerosol flow reactor method. Int J Pharm. 2003;263:69–83. doi: 10.1016/S0378-5173(03)00370-3. [DOI] [PubMed] [Google Scholar]
  • 9.Eerikäinen H, Kauppinen EI, Kansikas J. Polymeric drug nanoparticles prepared by an aerosol flow reactor method. Pharm Res. 2004;21:136–143. doi: 10.1023/B:PHAM.0000012161.58738.25. [DOI] [PubMed] [Google Scholar]
  • 10.Shukla AJ. Polymethacrylates. In: Wade A, Weller P J, editors. Handbook of Pharmaceutical Excipients. 2nd ed. Washington, DC: American Pharmaceutical Association, Pharmaceutical Press; 1994. [Google Scholar]
  • 11.Dittgen M, Durani M, Lehmann K. Acrylic polymers: a review of pharmaceutical applications. STP Pharma Sci. 1997;7:403–437. [Google Scholar]
  • 12.US Pharmacopeia XXVII. <724> Drug Release. Rockville, MD: United States Pharmacopeial Convention; 2003.
  • 13.US Pharmacopeia XXVII. <711> Dissolution. Rockville, MD: United States Pharmacopeial Convention; 2003.
  • 14.TSI Incorporated.Model 3075/3076 Constant Output Atomizer Instruction Manual. St Paul, MN: TSI Incorporated; 2000.
  • 15.Lefebvre AH. Atomization and sprays. In: Chigier N, editor. Combustion: An International Series. New York, NY: Hemisphere Publishing Corporation; 1989. [Google Scholar]
  • 16.Bodmeier R, Chen H. Preparation and characterization of microspheres containing the anti-inflammatory agents, indomethacin, ibuprofen, and ketoprofen. J Control Release. 1989;10:167–175. doi: 10.1016/0168-3659(89)90059-X. [DOI] [Google Scholar]
  • 17.Habib MJ, Mesue R. Development of controlled release formulations of ketoprofen for oral use. Drug Dev Ind Pharm. 1995;21:1463–1472. doi: 10.3109/03639049509063033. [DOI] [Google Scholar]
  • 18.Dubernet C, Rouland JC, Benoit JP. Ibuprofen-loaded ethylcellulose microspheres: analysis of the matrix structure by thermal analysis. J Pharm Sci. 1991;80:1029–1033. doi: 10.1002/jps.2600801106. [DOI] [PubMed] [Google Scholar]
  • 19.Palmieri GF, Bonacucina G, Martino P, Martelli S. Gastro-resistant microspheres containing ketoprofen. J Microencapsul. 2002;19:111–119. doi: 10.1080/02652040110065477. [DOI] [PubMed] [Google Scholar]
  • 20.Pignatello R, Ferro M, Puglisi G. Preparation of solid dispersions of nonsteroidal anti-inflammatory drugs with acrylic polymers and studies on mechanisms of drug-polymer interactions. AAPS PharmSciTech. 2002;3:E10–E10. doi: 10.1208/pt030210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Wunderlich B. Thermal Analysis. San Diego, CA: Academic Press, Inc; 1990. [Google Scholar]
  • 22.Dubernet C. Thermoanalysis of microspheres. Thermochim Acta. 1995;248:259–269. doi: 10.1016/0040-6031(94)01947-F. [DOI] [Google Scholar]
  • 23.Wu C, McGinity JW. Non-traditional plasticization of polymeric films. Int J Pharm. 1999;177:15–27. doi: 10.1016/S0378-5173(98)00312-3. [DOI] [PubMed] [Google Scholar]
  • 24.Wu C, McGinity JW. Influence of ibuprofen as a solid-state plasticizer in Eudragit RS 30 D on the physicochemical properties of coated beads. AAPS PharmSciTech. 2001;2:E24–E24. doi: 10.1208/pt020424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Sancin P, Caputo O, Cavallari C, et al. Effects of ultrasound-assisted compaction on Ketoprofen/Eudragit S100 mixtures. Eur J Pharm Sci. 1999;7:207–213. doi: 10.1016/S0928-0987(98)00022-0. [DOI] [PubMed] [Google Scholar]
  • 26.Mura P, Faucci MT, Parrini PL, Furlanetto S, Pinzauti S. Influence of the preparation method on the physicochemical properties of ketoprofen-cyclodextrin binary systems. Int J Pharm. 1999;179:117–128. doi: 10.1016/S0378-5173(98)00390-1. [DOI] [PubMed] [Google Scholar]
  • 27.Lin S-Y, Liao C-M, Hsiue G-H, Liang R-C. Study of a theophylline-Eudragit L mixture using a combined system of microscopic Fourier-transform infrared spectroscopy and differential scanning calorimetry. Thermochim Acta. 1995;254:153–166. doi: 10.1016/0040-6031(94)02114-4. [DOI] [Google Scholar]
  • 28.Lin SY, Peng RI. Solid-state interaction studies of drugs/polymers: I. Indomethacin/Eudragit E, RL or S resins. STP Pharm Sci. 1993;3:465–471. [Google Scholar]
  • 29.Lin S-Y, Yu H-L, Li M-J. Formation of six-membere cyclic anhydrides by thermally induced intramolecular ester condensation in Eudragit E film. Polym. 1999;40:3589–3593. doi: 10.1016/S0032-3861(98)00488-1. [DOI] [Google Scholar]
  • 30.Krause H-J, Schwarz A, Rohdewald P. Polyactic acid nanoparticles, a colloidal delivery system for lipophilic drugs. Int J Pharm. 1985;27:145–155. doi: 10.1016/0378-5173(85)90064-X. [DOI] [Google Scholar]
  • 31.Higuchi T. Mechanism of sustained-action medication. J Pharm Sci. 1963;52:1145–1149. doi: 10.1002/jps.2600521210. [DOI] [PubMed] [Google Scholar]

Articles from AAPS PharmSciTech are provided here courtesy of American Association of Pharmaceutical Scientists

RESOURCES