Skip to main content
AAPS PharmSciTech logoLink to AAPS PharmSciTech
. 2006 Jul 14;7(3):E22–E29. doi: 10.1208/pt070359

Acoustic-resonance spectrometry as a process analytical technology for the quantification of active pharmaceutical ingredient in semi-solids

Joseph Medendorp 1, Robert G Buice 2, Robert A Lodder 1,
PMCID: PMC2750501  PMID: 16584153

Abstract

The purpose of this study was to demonstrate acoustic resonance spectrometry (ARS) as an alternative process analytical technology to near infrared (NIR) spectroscopy for the quantification of active pharmaceutical ingradient (API) in semi-solids such as creams, gels, ointments, and lotions. The ARS used for this research was an inexpensive instrument constructed from readily available parts. Acoustic-resonance spectra were collected with a frequency spectrum from 0 to 22.05 KHz. NIR data were collected from 1100 to 2500 nm. Using 1-point net analyte signal (NAS) calibration, NIR for the API (colloidal oatmeal [CO]) gave anr2 prediction accuracy of 0.971, and a standard error of performance (SEP) of 0.517%CO. ARS for the API resulted in anr2 of 0.983 and SEP of 0.317%CO. NAS calibration is compared with principal component regression. This research demonstrates that ARS can sometimes outperform NIR spectrometry and can be an effective analytical method for the quantification of API in semi-solids. ARS requires no sample preparation, provides larger penetration depths into lotions than optical techniques, and measures API concentrations faster and more accurately. These results suggest that ARS is a useful process analytical technology (PAT).

Keywords: creams, gels, lotions, net analyte signal, ointments, process analytical technologies (PAT), sound

Full Text

The Full Text of this article is available as a PDF (233.6 KB).

References

  • 1.NIH NLM Specialized Information Services. Food and Drug Administration Actions: Recalls and Field Corrections 2002–May 12, 2004.National Institutes of Health Web site. Available at: http:// householdproducts.nlm.nih.gov/NLM_FDARecalls.htm#rayblock1. Accessed: April 1, 2005.
  • 2.USDA. Process Analytical Technology (PAT) Initiative.US Food and Drug Administration Web site. Available at: http://www.fda.gov/eder/ OPS/PAT.htm. Accessed: April 1, 2005.
  • 3.Mariani E, Villa C, Neuhoff C, Dorato S. Derivatization procedure and HPLC determination of 2-ethoxyethanol in cosmetic samples. Int J Cosmet Sci. 1992;21:199–205. doi: 10.1046/j.1467-2494.1999.203164.x. [DOI] [PubMed] [Google Scholar]
  • 4.Westgate E, Sherma J. Determination of the sunscreen oxybenzone in lotions by reversed-phase HPTLC with ultraviolet absorption densitometry. J Liq Chromatogr Relat Technol. 2000;23:609–615. doi: 10.1081/JLC-100101477. [DOI] [Google Scholar]
  • 5.Sabo M, Gross J, Rosenberg I. Quantitation of dimethicone in lotions using Fourier transform infrared spectral substraction. J Soc Cosmet Chem. 1984;35:273–281. [Google Scholar]
  • 6.Grunewald H, Kurowski C, Timm D, Grummisch U, Meyhack U. Rapid non-destructive raw material identification in the cosmetic industry with near-infrared spectroscopy. J Near Infrared Spectrosc. 1998;6:215–222. [Google Scholar]
  • 7.Alltech Associates. Dimethicone.Alltech Associates Inc Web site. Available at: http://www.alltechweb.com/productinfo/technical/app/ 0048E.pdf. Accessed: April 15, 2005.
  • 8.Buice R, Pinkston P, Lodder R. Optimization of acoustic-resonance spectrometry for analysis of intact tablets and prediction of dissolution rate. Appl Spectrosc. 1994;48:517–524. doi: 10.1366/000370294775268929. [DOI] [Google Scholar]
  • 9.Serris E, Perier-Camby L, Thomas G, Desfontaines M, Fantozzi G. Acoustic emission of pharmaceutical powders during compression. Powder Technol. 2002;128:296–299. doi: 10.1016/S0032-5910(02)00174-2. [DOI] [Google Scholar]
  • 10.Reynaud P, Dubois J, Rouby D, Fantozzi G. Acoustic emission monitoring of uniaxial pressing of ceramic powders. Ceramics Int. 1992;18:391–397. doi: 10.1016/0272-8842(92)90071-K. [DOI] [Google Scholar]
  • 11.Martin LP, Poret JC, Danon A, Rosen M. Effect of adsorbed water on the ultrasonic velocity in alumina powder compacts. Mater Sci Eng A. 1998;252:27–35. doi: 10.1016/S0921-5093(98)00669-8. [DOI] [Google Scholar]
  • 12.Kaatze U, Wehrmann B, Pottel R. Acoustical absorption spectroscopy of liquids between 0.15 and 3000 MHz. I. High resolution ultrasonic resonator method. J Phys [E]. 1987;20:1025–1030. [Google Scholar]
  • 13.Bolotnikov M, Neruchev Y. Speed of sound of hexane + 1-chlorohexane, hexane + 1-iodohexane, and 1-chlorohexane + 1-iodohexane at saturation condition. J Chem Eng Data. 2003;48:411–415. doi: 10.1021/je0256129. [DOI] [Google Scholar]
  • 14.Lévêque G, Ferrandis J, Est J, Cros B. An acoustic sensor for simultaneous density and viscosity measurements in liquids. Rev Sci Instrum. 2000;71:1433–1440. doi: 10.1063/1.1150476. [DOI] [Google Scholar]
  • 15.Ferrandis JY, Leveque G. In situ measurement of elastic properties of cement by an ultrasonic resonant sensor. Cement Concrete Res. 2003;33:1183–1187. doi: 10.1016/S0008-8846(03)00040-1. [DOI] [Google Scholar]
  • 16.Dukhin AS, Goetz PJ. Acoustic spectroscopy for concentrated polydisperse colloids with high density contrast. Langmuir. 1996;12:4987–4997. doi: 10.1021/la951085y. [DOI] [Google Scholar]
  • 17.Dukhin AS, Goetz PJ. Characterization of aggregation phenomena by means of acoustic and electroacoustic spectroscopy. Colloids Surf A: Physicochem Eng Aspects. 1998;144:49–58. doi: 10.1016/S0927-7757(98)00565-2. [DOI] [Google Scholar]
  • 18.Ramdani A, Cros B, Sidki M, Ferrandis J. Acoustic near field technique for characterization of liquids, bitumen and cement setting. Eur Phys J AP. 2001;15:69–76. doi: 10.1051/epjap:2001168. [DOI] [Google Scholar]
  • 19.Patois R, Vairac P, Cretin B. Near-field acoustic densimeter and viscosimeter. Rev Sci Instrum. 2000;71:3860–3863. doi: 10.1063/1.1286308. [DOI] [Google Scholar]
  • 20.Prugne Ch, Est J, Cros B, Leveque G, Attal J. Measurement of the viscosity of liquids by near-field acoustics. Meas Sci Technol. 1998;9:1894–1898. doi: 10.1088/0957-0233/9/11/015. [DOI] [Google Scholar]
  • 21.Mills TP, Jones A, Lodder RA. Identification of wood species by acoustic-resonance spectrometry using multivariate subpopulation analysis. Appl Spectrosc. 1993;47:1880–1886. doi: 10.1366/0003702934065957. [DOI] [Google Scholar]
  • 22.Lai E, Chan B, Chen S. Ultrasonic resonance spectroscopic analysis of microliters of liquids. Appl Spectrosc. 1988;42:526–529. doi: 10.1366/0003702884427906. [DOI] [Google Scholar]
  • 23.Medendorp J, Yedluri J, Hammell DC, Ji T, Lodder RA, Stinchcomb AL. Near infrared spectrometry for the quantification of dermal absorption of econazole nitrate and 4-cyanophenol.Pharm Res. [DOI] [PubMed]
  • 24.Boelens H, Kok W, Noord O, Smilde A. Performance optimization of spectroscopic process analyzers. Anal Chem. 2004;76:2656–2663. doi: 10.1021/ac0353987. [DOI] [PubMed] [Google Scholar]
  • 25.Lorber A. Error propagation and figures of merit for quantification by solving matrix equations. Anal Chem. 1986;58:1167–1172. doi: 10.1021/ac00297a042. [DOI] [Google Scholar]
  • 26.Booksh KS, Kowalski BR.Theory of analytical chemistry Anal Chem. 199466782a–791a. 10.1021/ac00087a0018179206 [DOI] [Google Scholar]
  • 27.Lorber A, Faber K, Kowalski BR. Net analyte signal calculation in multivariate calibration. Anal Chem. 1997;69:1620–1626. doi: 10.1021/ac960862b. [DOI] [Google Scholar]
  • 28.Medendorp JP, Lodder RA. Applications of integrated sensing and processing in spectroscopic imaging and sensing. J. Chemometr. 2006;19:533–542. doi: 10.1002/cem.961. [DOI] [Google Scholar]
  • 29.Buice R, Lodder RA. Determination of cholesterol using a novel magnetohydrodynamic acoustic-resonance near-IR (MARNI) spectrometer. Appl Spectrosc. 1993;47:887–890. doi: 10.1366/0003702934415237. [DOI] [Google Scholar]
  • 30.Fountain W, Dumstorf K, Lowell AE, Lodder RA, Mumper RJ. Near-infrared spectroscopy for the determination of testosterone in thin-film composites. J Pharm Biomed Anal. 2003;33:181–189. doi: 10.1016/S0731-7085(03)00345-5. [DOI] [PubMed] [Google Scholar]
  • 31.Geladi P, MacDougall D, Martens H. Linearization and scatter-correction for NIR reflectance spectra of meat. Appl Spectrosc. 1985;39:491–500. doi: 10.1366/0003702854248656. [DOI] [Google Scholar]
  • 32.Lodder R, Hieftje G. Detection of subpopulations in near-infrared reflectance analysis. Appl Spectrosc. 1988;42:1500–1512. doi: 10.1366/0003702884429562. [DOI] [Google Scholar]
  • 33.Lodder R. CD/MP3 Acoustic Resonance Spectrometer.Analytical Spectroscopy Research Group Web site. Available at: http://www.pharm. uky.edu. Accessed: April 5, 2004.
  • 34.Jolliffe IT. Principal Component Analysis. New York, NY: Springer; 2002. [Google Scholar]
  • 35.Hamilton S, Lodder R. Hyperspectral imaging technology for pharmaceutical analysis. Proc Soc Photo-Opt Instrum Eng. 2002;4626:136–147. [Google Scholar]
  • 36.Bear Creek Lumber. Western Red Cedar Physical Properties.Bear Creek Lumber Web site. Available at: http://www.bearcreeklumber. com/generalinfo/onlineliterature/technicalinfohtml/wrcphysicalproperties. html. Accessed: March 1, 2005.

Articles from AAPS PharmSciTech are provided here courtesy of American Association of Pharmaceutical Scientists

RESOURCES