Skip to main content
AAPS PharmSciTech logoLink to AAPS PharmSciTech
. 2006 Jul 21;7(3):E38–E46. doi: 10.1208/pt070361

Formulation of anastrozole microparticles as biodegradable anticancer drug carriers

Ahmed S Zidan 1,2,3, Omaima A Sammour 1, Mohammed A Hammad 1, Nagia A Megrab 1, Muhammad D Hussain 4, Manosor A Khan 3, Muhammad J Habib 2,
PMCID: PMC2750503  PMID: 17025242

Abstract

The purpose of this study was to develop poly(d,1-lactic-coglycolic acid) (PLGA)-based anastrozole microparticles for treatment of breast cancer. An emulsion/extraction method was used to prepare anastrozole sustained-release PLGA-based biodegradable microspheres. Gas chromatography with mass spectroscopy detection was used for the quantitation of the drug throughout the studies. Microparticles were formulated and characterized in terms of encapsulation efficiency, particle size distribution, surface morphology, and drug release profile. Preparative variables such as concentrations of stabilizer, drug-polymer ratio polymer viscosity, stirring rate, and ratio of internal to external phases were found to be important factors for the preparation of anastrozole-loaded PLGA microparticles. Fourier transform infrared with attenuated total reflectance (FTIR-ATR) analysis and differential scanning calorimetry (DSC) were employed to determine any interactions between drug and polymer. An attempt was made to fit the data to various dissolution kinetics models for multiparticulate systems, including the zero order, first order, square root of time kinetics, and biphasic models. The FTIR-ATR studies revealed no chemical interaction between the drug and the polymer. DSC results indicated that the anastrozole trapped in the microspheres existed in an amorphous or disordered-crystalline status in the polymer matrix. The highest correlation coefficients were obtained for the Higuchi model, suggesting a diffusion mechanism for the drug release. The results demonstrated that anastrozole microparticles with PLGA could be an alternative delivery method for the long-term treatment of breast cancer.

Keywords: Breast cancer, microencapsulation, biodegradation, anastrozole, PLGA

Full Text

The Full Text of this article is available as a PDF (355.4 KB).

References

  • 1.Chowdhury S, Ellis PA. Recent advances in the use of aromatase inhibitors for women with postmenopausal breast cancer. J Br Menopause Soc. 2005;11:96–102. doi: 10.1258/136218005775544408. [DOI] [PubMed] [Google Scholar]
  • 2.Fernández-Carballido A, Herrero-Vanrell R, Molina-Martinez IT, Pastoriza P. Biodegradable ibuprofen-loaded PLGA microspheres for intraarticular administration: effect of Labrafil addition on release in vitro. Int J Pharm. 2004;279:33–41. doi: 10.1016/j.ijpharm.2004.04.003. [DOI] [PubMed] [Google Scholar]
  • 3.Tuncay M, Calis S, Kas HS, Ercan MT, Peksoy I, Hincal AA. Diclofenac sodium incorporated PLGA (50:50) microspheres: formulation considerations and in vitro:in vivo evaluation. Int J Pharm. 2000;195:179–188. doi: 10.1016/S0378-5173(99)00394-4. [DOI] [PubMed] [Google Scholar]
  • 4.Bock MJ, Bara I, LeDonne N, Martz A, Dyroff M. Validated assay for the quantification of anastrozole in human plasma by capillary gas chromatography-63Ni electron capture detection. J Chromatogr B Biomed Sci Appl. 1997;700:131–138. doi: 10.1016/S0378-4347(97)00129-1. [DOI] [PubMed] [Google Scholar]
  • 5.Marcos J, Torre X, Gonzalez JC, Segura J, Pascual JA. Liquid chromatography clean-up method to improve identification of anabolic agents in human urine by gas chromatography-mass spectrometry. Anal Chim Acta. 2004;522:79–88. doi: 10.1016/j.aca.2004.03.021. [DOI] [Google Scholar]
  • 6.Young CR, Dietzsch C, Cerea M, et al. Physicochemical characterization and mechanisms of release of theophylline from melt-extruded dosage forms based on a methacrylic acid copolymer. Int J Pharm. 2005;301:112–120. doi: 10.1016/j.ijpharm.2005.05.025. [DOI] [PubMed] [Google Scholar]
  • 7.Sinha VR, Trehan A. Formulation, characterization, and evaluation of ketorolac tromethamine-loaded biodegradable microspheres. Drug Deliv. 2005;12:133–142. doi: 10.1080/10717540590925726. [DOI] [PubMed] [Google Scholar]
  • 8.Jaganathan KS, Raob YUB, Singh P, et al. Development of a single dose tetanus toxoid formulation based on polymeric microspheres: a comparative study of poly(d,l-lactic-co-glycolic acid) versus chitosan microspheres. Int J Pharm. 2005;294:23–32. doi: 10.1016/j.ijpharm.2004.12.026. [DOI] [PubMed] [Google Scholar]
  • 9.Woo BH, Kostanski JW, Gebrekidan S, Dani BA, Thanoo BC, DeLuca PP. Preparation, characterization and in vivo evaluation of 120-day poly(D,L-lactide) leuprolide microspheres. J Control Release. 2001;75:307–315. doi: 10.1016/S0168-3659(01)00403-5. [DOI] [PubMed] [Google Scholar]
  • 10.Sandor M, Enscore D, Weston P, Mathiowitz E. Effect of protein molecular weight on release from micron-sized PLGA microspheres. J Control Release. 2001;76:297–311. doi: 10.1016/S0168-3659(01)00446-1. [DOI] [PubMed] [Google Scholar]
  • 11.Wang D, Robinson DR, Kwon GS, Samuel J. Encapsulation of plasmid DNA in biodegradable poly(D,L-lactic-coglycolic acid) microspheres as a novel approach for immunogene delivery. J Control Release. 1999;57:9–18. doi: 10.1016/S0168-3659(98)00099-6. [DOI] [PubMed] [Google Scholar]
  • 12.Kwon HY, Lee JY, Choi SW, Jang Y, Kim JH. Preparation of PLGA nanoparticles containing estrogen by emulsification-diffusion method. Colloids Surf A: Physicochem Eng. 2001;182:123–130. doi: 10.1016/S0927-7757(00)00825-6. [DOI] [Google Scholar]
  • 13.Chorny M, Fishbein I, Danenberg HD, Golomb G. Lipophilic drug loaded nanospheres prepared by nanoprecipitation: effect of formulating variables on size, drug recovery and release kinetics. J Control Release. 2002;83:389–400. doi: 10.1016/S0168-3659(02)00211-0. [DOI] [PubMed] [Google Scholar]
  • 14.Quintanar-Guerrero D, Fessi H, Allémann E, Doelker E. Influence of stabilizing agents and preparative variables on the formation of poly(d,l-lactic acid) nanoparticles by an emulsification-diffusion technique. Int J Pharm. 1996;143:133–141. doi: 10.1016/S0378-5173(96)04697-2. [DOI] [Google Scholar]
  • 15.Mainardes RM, Evangelista RC. PLGA nanoparticles containing praziquantel: effect of formulation variables on size distribution. Int J Pharm. 2005;290:137–144. doi: 10.1016/j.ijpharm.2004.11.027. [DOI] [PubMed] [Google Scholar]
  • 16.Mateovic T, Kriznar B, Bogataj M, Mrhar A. The influence of stirring rate on biopharmaceutical properties of Eudragit RS microspheres. J Microencapsul. 2002;19:29–36. doi: 10.1080/02652040010055289. [DOI] [PubMed] [Google Scholar]
  • 17.Feng S, Huang G. Effects of emulsifiers on the controlled release of paclitaxel (Taxol®) from nanospheres of biodegradable polymers. J Control Release. 2001;71:53–69. doi: 10.1016/S0168-3659(00)00364-3. [DOI] [PubMed] [Google Scholar]
  • 18.Freiberg S, Zhu XX. Polymer microspheres for controlled drug release. Int J Pharm. 2004;282:1–18. doi: 10.1016/j.ijpharm.2004.04.013. [DOI] [PubMed] [Google Scholar]
  • 19.Arimidex® (Anastrozole)Tablets Prescribing Information. 2002. Wilmington, DE: AstraZenecal. Available at: http://www.fda.gov/medwatch /SAFETY/2004/Aug_PI/Arimidex_PI.pdf. Accessed: June 13, 2006.
  • 20.Chen S, Singh J. Controlled delivery of testosterone from smart polymer solution based systems: in vitro evaluation. Int J Pharm. 2005;295:183–190. doi: 10.1016/j.ijpharm.2005.02.023. [DOI] [PubMed] [Google Scholar]
  • 21.Crow BB, Borneman AF, Hawkins DL, Smith GM, Nelson KD. Evaluation of in vitro drug release, pH change, and molecular weight degradation of poly(L-lactic acid) and poly(D,L-lactide-co-glycolide) Tissue Eng. 2005;11:1077–1084. doi: 10.1089/ten.2005.11.1077. [DOI] [PubMed] [Google Scholar]
  • 22.Berkland C, King M, Cox A, Kim K, Pack DW. Precise control of PLG microsphere size provides enhanced control of drug release rate. J Control Release. 2002;82:137–147. doi: 10.1016/S0168-3659(02)00136-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Weert M, Hof R, Weerd J, et al. Lysozyme distribution and conformation in a biodegradable polymer matrix as determined by FTIR techniques. J Control Release. 2000;68:31–40. doi: 10.1016/S0168-3659(00)00227-3. [DOI] [PubMed] [Google Scholar]
  • 24.Corrigan OI. Thermal analysis of spray dried products. Thermochim Acta. 1995;248:245–258. doi: 10.1016/0040-6031(94)01891-J. [DOI] [Google Scholar]

Articles from AAPS PharmSciTech are provided here courtesy of American Association of Pharmaceutical Scientists

RESOURCES