Skip to main content
AAPS PharmSciTech logoLink to AAPS PharmSciTech
. 2006 Aug 4;7(3):E61–E69. doi: 10.1208/pt070364

Evaluation of alternative strategies to optimize ketorolac transdermal delivery

Carmelo Puglia 1, Rosanna Filosa 2, Antonella Peduto 2, Paolo de Caprariis 2, Luisa Rizza 1, Francesco Bonina 1, Paolo Blasi 3,
PMCID: PMC2750506  PMID: 17025245

Abstract

In the present study, 2 alternative strategies to optimize ketorolac transdermal delivery, namely, prodrugs (polyoxyethylene glycol ester derivatives, I–IV) and nanostructured lipid carriers (NLC) were investigated. The synthesized prodrugs were chemically stable and easily degraded to the parent drug in human plasma. Ketorolac-loaded NLC with high drug content could be successfully prepared. The obtained products formulated into gels showed a different trend of drug permeation through human stratum corneum and epidermis. Particularly, skin permeation of ester prodrugs was significantly enhanced, apart from ester IV, compared with ketorolac, while the results of drug release from NLC outlined that these carriers were ineffective in increasing ketorolac percutaneous absorption owing to a higher degree of mutual interaction between the drug and carrier lipid matrix. Polyoxyethylene glycol esterification confirmed to be a suitable approach to enhance ketorolac transdermal delivery, while NLC seemed more appropriate for sustained release owing to the possible formation of a drug reservoir into the skin.

Keywords: ketorolac, lipid carrier, NLC, prodrug, transdermal delivery

Full Text

The Full Text of this article is available as a PDF (203.4 KB).

References

  • 1.Kokki H. Nonsteroidal anti-inflammatory drugs for postoperative pain: a focus on children. Paediatr Drugs. 2003;5:103–123. doi: 10.2165/00128072-200305020-00004. [DOI] [PubMed] [Google Scholar]
  • 2.Buckley MM, Brogden RN. Ketorolac: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential. Drugs. 1990;39:86–109. doi: 10.2165/00003495-199039010-00008. [DOI] [PubMed] [Google Scholar]
  • 3.Reinhart DI. Minimizing the adverse effects of ketorolac. Drug Saf. 2000;22:487–497. doi: 10.2165/00002018-200022060-00007. [DOI] [PubMed] [Google Scholar]
  • 4.Parikh DK, Ghosh TK. Feasibility of transdermal delivery of fluoxetine. AAPS PharmSciTech. 2005;6:E144–E149. doi: 10.1208/pt060222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Doh HJ, Cho WJ, Yong CS, et al. Synthesis and evaluation of ketorolac ester prodrugs for transdermal delivery. J Pharm Sci. 2003;92:1008–1017. doi: 10.1002/jps.10353. [DOI] [PubMed] [Google Scholar]
  • 6.Foldvari M. Non-invasive administration of drugs through the skin: challenges in delivery system design. Pharm Sci Technol Today. 2000;3:417–425. doi: 10.1016/S1461-5347(00)00317-5. [DOI] [PubMed] [Google Scholar]
  • 7.Barry BW. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci. 2001;14:101–114. doi: 10.1016/S0928-0987(01)00167-1. [DOI] [PubMed] [Google Scholar]
  • 8.Alsarra IA, Bosela AA, Ahmed SM, Mahrous GM. Proniosomes as a drug carrier for transdermal delivery of ketorolac. Eur J Pharm Biopharm. 2005;59:485–490. doi: 10.1016/j.ejpb.2004.09.006. [DOI] [PubMed] [Google Scholar]
  • 9.Cho YA, Gwak HS. Transdermal delivery of ketorolac tromethamine: effects of vehicles and penetration enhancers. Drug Dev Ind Pharm. 2004;30:557–564. doi: 10.1081/DDC-120037486. [DOI] [PubMed] [Google Scholar]
  • 10.Tiwari SB, Udupa N. Investigation into the potential of iontophoresis facilitated delivery of ketorolac. Int J Pharm. 2003;260:93–103. doi: 10.1016/S0378-5173(03)00249-7. [DOI] [PubMed] [Google Scholar]
  • 11.Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles for controlled drug delivery: a review of the state of the art. Eur J Pharm Biopharm. 2000;50:161–177. doi: 10.1016/S0939-6411(00)00087-4. [DOI] [PubMed] [Google Scholar]
  • 12.Kim BY, Doh HJ, Le TN, et al. Ketorolac amide prodrugs for transdermal delivery: stability and in vitro rat skin permeation studies. Int J Pharm. 2005;293:193–202. doi: 10.1016/j.ijpharm.2005.01.002. [DOI] [PubMed] [Google Scholar]
  • 13.Bonina FP, Montenegro L, Caprariis P, Palagiano F, Trapani G, Liso G. In vitro and in vivo evaluation of polyoxyethylene indomethacin esters as dermal prodrugs. J Control Release. 1995;34:223–232. doi: 10.1016/0168-3659(95)00003-Q. [DOI] [Google Scholar]
  • 14.Inagi T, Muramatsu T, Nagai H, Terada H. Mechanism of indomethacin partition between n-octanol and water. Chem Pharm Bull (Tokyo) 1981;29:2330–2337. [Google Scholar]
  • 15.Niwa T, Takeuchi H, Hino T, Kunou N, Kawashima Y. Preparation of biodegradable nanospheres of water-soluble and insoluble drugs with D,L-lactide/glycolide copolymer by a novel spontaneous emulsification solvent diffusion method, and the drug release behavior. J Control Release. 1993;25:89–98. doi: 10.1016/0168-3659(93)90097-O. [DOI] [Google Scholar]
  • 16.Kligman AM, Christophers E. Preparation of isolated sheets of human stratum corneum. Arch Dermatol. 1963;88:702–705. doi: 10.1001/archderm.1963.01590240026005. [DOI] [PubMed] [Google Scholar]
  • 17.Swarbrick J, Lee G, Brom J. Drug permeation through human skin: I. Effect of storage conditions of skin. J Invest Dermatol. 1982;78:63–66. doi: 10.1111/1523-1747.ep12497937. [DOI] [PubMed] [Google Scholar]
  • 18.Bronaugh RL, Stewart RF, Simon M. Methods for in vitro percutaneous absorption studies VII: use of excised human skin. J Pharm Sci. 1986;75:1094–1097. doi: 10.1002/jps.2600751115. [DOI] [PubMed] [Google Scholar]
  • 19.Touitou E, Fabin B. Altered skin permeation of a highly lipophilic molecule: tetrahydrocannabinol. Int J Pharm. 1988;43:17–22. doi: 10.1016/0378-5173(88)90053-1. [DOI] [Google Scholar]
  • 20.Siewert M, Dressman J, Brown CK, Shah VP. FIP/AAPS guidelines to dissolution/in vitro release testing of novel/special dosage forms. AAPS PharmSciTech. 2003;4:E7–E7. doi: 10.1208/pt040107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Bonina FP, Puglia C, Barbuzzi T, et al. In vitro and in vivo evaluation of polyoxyethylene esters as dermal prodrugs of ketoprofen, naproxen and diclofenac. Eur J Pharm Sci. 2001;14:123–134. doi: 10.1016/S0928-0987(01)00163-4. [DOI] [PubMed] [Google Scholar]
  • 22.Goldsmith LA. Physiology, Biochemistry, and Molecular Biology of the Skin. New York, NY: Oxford University Press; 1991. [Google Scholar]
  • 23.Yalkowsky SH, Valvani SC. Solubility and partitioning I: solubility of nonelectrolytes in water. J Pharm Sci. 1980;69:912–922. doi: 10.1002/jps.2600690814. [DOI] [PubMed] [Google Scholar]
  • 24.Yalkowsky SH, Valvani SC, Roseman TJ. Solubility and partitioning VI: octanol solubility and octanol-water partition coefficients. J Pharm Sci. 1983;72:866–870. doi: 10.1002/jps.2600720808. [DOI] [PubMed] [Google Scholar]
  • 25.Osborne DW. Computational methods for prodrug or drug analogue selection optimized for percutaneous delivery. In: Osborne DW, Amann AH, editors. Topical Drug Delivery Formulations. New York, NY: Marcel Dekker; 1990. pp. 109–125. [Google Scholar]
  • 26.Foroutan SM, Watson DG. Synthesis and characterization of polyethylene glycol conjugates of hydrocortisone as potential prodrugs for ocular steroid delivery. Int J Pharm. 1997;157:103–111. doi: 10.1016/S0378-5173(97)00236-6. [DOI] [Google Scholar]
  • 27.Ricci M, Puglia C, Bonina F, Giovanni C, Giovagnoli S, Rossi C. Evaluation of indomethacin percutaneous absorption from nanostructured lipid carriers (NLC): in vitro and in vivo studies. J Pharm Sci. 2005;94:1149–1159. doi: 10.1002/jps.20335. [DOI] [PubMed] [Google Scholar]
  • 28.Davaran S, Rashidi MR, Hashemi M. Synthesis and hydrolytic behavior of 2-mercaptoethyl ibuprofenate-polyethylene glycol conjugate as a novel transdermal prodrug. J Pharm Pharmacol. 2003;55:513–517. doi: 10.1211/002235702900. [DOI] [PubMed] [Google Scholar]
  • 29.Lien EJ, Gao H. QSAR analysis of skin permeability of various drugs in man as compared to in vivo and in vitro studies in rodents. Pharm Res. 1995;12:583–587. doi: 10.1023/A:1016266316100. [DOI] [PubMed] [Google Scholar]
  • 30.Bonina FP, Rimoli MG, Avallone L, et al. New oligoethylene ester derivatives of 5-iodo-2′-deoxyuridine as dermal prodrugs: synthesis, physicochemical properties, and skin permeation studies. J Pharm Sci. 2002;91:171–179. doi: 10.1002/jps.1174. [DOI] [PubMed] [Google Scholar]
  • 31.Castelli F, Puglia C, Sarpietro MG, Rizza L, Bonina F. Characterization of indomethacin loaded lipid nanoparticles by differential scanning calorimetry. Int J Pharm. 2005;304:231–238. doi: 10.1016/j.ijpharm.2005.08.011. [DOI] [PubMed] [Google Scholar]
  • 32.Puglia C, Bonina F, Trapani G, Franco M, Ricci M. Evaluation of in vitro percutaneous absorption of lorazepam and clonazepam from hydroalcoholic gel formulations. Int J Pharm. 2001;228:79–87. doi: 10.1016/S0378-5173(01)00806-7. [DOI] [PubMed] [Google Scholar]
  • 33.Röpke CD, Kaneko TM, Rodrigues RM, et al. Evaluation of percutaneous absorption of 4-nerolidylcathecol from 4 topical formulations. Int J Pharm. 2002;249:109–116. doi: 10.1016/S0378-5173(02)00477-5. [DOI] [PubMed] [Google Scholar]

Articles from AAPS PharmSciTech are provided here courtesy of American Association of Pharmaceutical Scientists

RESOURCES