Skip to main content
AAPS PharmSciTech logoLink to AAPS PharmSciTech
. 2005 Oct 14;6(2):E329–E357. doi: 10.1208/pt060243

Cyclodextrins in drug delivery: An updated review

Rajeswari Challa 1, Alka Ahuja 1,, Javed Ali 1, R K Khar 1
PMCID: PMC2750546  PMID: 16353992

Abstract

The purpose of this review is to discuss and summarize some of the interesting findings and applications of cyclodextrins (CDs) and their derivatives in different areas of drug delivery, particularly in protein and peptide drug delivery and gene delivery. The article highlights important CD applications in the design of various novel delivery systems like liposomes, microspheres, microcapsules, and nanoparticles. In addition to their well-known effects on drug solubility and dissolution, bioavailability, safety, and stability, their use as excipients in drug formulation are also discussed in this article. The article also focuses on various factors influencing inclusion complex formation because an understanding of the same is necessary for proper handling of these versatile materials. Some important considerations in selecting CDs in drug formulation such as their commercial availability, regulatory status, and patent status are also summarized. CDs, because of their continuing ability to find several novel applications in drug delivery, are expected to solve many problems associated with the delivery of different novel drugs through different delivery routes.

KeyWords: cyclodextrins, drug formulation, drug delivery, novel delivery systems, excipients

Full Text

The Full Text of this article is available as a PDF (381.5 KB).

References

  • 1.Loftsson T, Brewester M. Pharmaceutical applications of cyclodextrins. I. Drug solubilization and stabilization. J Pharm Sci. 1996;85:1017–1025. doi: 10.1021/js950534b. [DOI] [PubMed] [Google Scholar]
  • 2.Endo T, Nagase H, Ueda H, Kobayashi S, Nagai T. Isolation, purification, and characterization of Cyclomaltodecaose (curly epsilon-Cyclodextrin), Cyclomaltoundecaose (zeta-Cyclodextrin) and Cyclomaltotridecaose (é-Cyclodextrin) Chem Pharm Bull (Tokyo.) 1997;45:532–536. [Google Scholar]
  • 3.Endo T, Nagase H, Ueda H, Shigihara A, Kobayashi S, Nagai T. Isolation, purification and characterization of Cyclomaltooctadecaose (v-Cyclodextrin), Cyclomaltononadecaose (xi-Cyclodextrin), Cyclomaltoeicosaose (o-Cyclodextrin) and Cyclomaltoheneicosaose (ã-Cyclodextrin. Chem Pharm Bull (Tokyo). 1998;46:1840–1843. [Google Scholar]
  • 4.Miyazawa H, Ueda H, Nagase T, Endo T, Kobayashi S, Nagai T. Physicochemical properties and inclusion complex formation of δ-cyclodextrin. Eur J Pharm Sci. 1995;3:153–162. doi: 10.1016/0928-0987(95)00006-Y. [DOI] [Google Scholar]
  • 5.Szejtli J. Cylodextrin in drug formulations: Part I. Pharm Technol Int. 1991;3:15–23. [Google Scholar]
  • 6.Szente L, Szejtli J. Highly soluble cyclodextrin derivatives: chemistry, properties, and trends in development. Adv Drug Deliv Rev. 1999;36:17–38. doi: 10.1016/S0169-409X(98)00092-1. [DOI] [PubMed] [Google Scholar]
  • 7.Matsuda H, Arima H. Cyclodextrins in transdermal and rectal delivery. Adv Drug Deliv Rev. 1999;36:81–99. doi: 10.1016/S0169-409X(98)00056-8. [DOI] [PubMed] [Google Scholar]
  • 8.Higuchi T, Connors KA. Phase-solubility techniques. Adva Anal Chem Instr. 1965;4:212–217. [Google Scholar]
  • 9.Rajewski RA, Stella VJ. Pharmaceutical applications of cyclodextrins. 2.In vivo drug delivery. J Pharm Sci. 1996;85:1142–1168. doi: 10.1021/js960075u. [DOI] [PubMed] [Google Scholar]
  • 10.Hersey A, Robinson BH, Kelly HC. Mechanism of inclusion compound formation for binding of organic dyes, ions and surfactants to alpha cyclodextrin studied by kinetic methods based on competition experiments. J Chem Soc, Faraday Trans 1. 1986;82:1271–1287. doi: 10.1039/f19868201271. [DOI] [Google Scholar]
  • 11.Cramer F, Saenger W, Satz HC. Inclusion compounds. XIX. The formation of inclusion compounds of alpha cyclodextrin in aqueous solutions, thermodynamics and kinetics. J Am Chem Soc. 1967;89:14–20. doi: 10.1021/ja00977a003. [DOI] [Google Scholar]
  • 12.Uekama K, Otagiri M. Cyclodextrins in drug carrier systems. Crit Rev Ther Drug Carrier Sys. 1987;3:1–40. [PubMed] [Google Scholar]
  • 13.Szejtli J. Medicinal applications of cyclodextrins. Med Res Rev. 1994;14:353–386. doi: 10.1002/med.2610140304. [DOI] [PubMed] [Google Scholar]
  • 14.Thomson DO. Cyclodextrins-enabling excipients: their present and future use in pharmaceuticals. Crit Rev Ther Drug Carr Sys. 1997;14:1–104. [PubMed] [Google Scholar]
  • 15.Jayachandra Babu R, Pandit JK. Cyclodextrin inclusion complexes: oral applications. Eastern Pharmacist. 1995;38:37–42. [Google Scholar]
  • 16.Irie T, Uekama K. Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation. J Pharm Sci. 1997;86:147–162. doi: 10.1021/js960213f. [DOI] [PubMed] [Google Scholar]
  • 17.Stella VJ, Rajeswski RA. Cyclodextrins: their future in drug formulation and delivery. Pharm Res. 1997;14:556–567. doi: 10.1023/A:1012136608249. [DOI] [PubMed] [Google Scholar]
  • 18.Uekama K, Hirayama F, Irie T. Cyclodextrin drug carrier systems. Chem Rev. 1998;98:2045–2076. doi: 10.1021/cr970025p. [DOI] [PubMed] [Google Scholar]
  • 19.Loftsson T, Ólafsson JH. Cyclodextrins: new drug delivery system in dermatology. Int J Dermatol. 1998;37:241–246. doi: 10.1046/j.1365-4362.1998.00369.x. [DOI] [PubMed] [Google Scholar]
  • 20.Loftsson T. Increasing the cyclodextrin complexation of drugs and drug bioavailability through addition of water-soluble polymers. Pharmazie. 1998;53:733–740. [PubMed] [Google Scholar]
  • 21.Castillo JA, Canales JP, Garcia JJ, Lastres JL, Bolas F, Torrado JJ. Preparation and characterization of albendazole beta-cyclodextrin complexes. Drug Dev Ind Pharm. 1999;25:1241–1248. doi: 10.1081/DDC-100102294. [DOI] [PubMed] [Google Scholar]
  • 22.Diaz D, Escobar Llanos CM, Bernad MJB. Study of the binding in an aqueous medium of inclusion complexes of several cyclodextrins involving fenoprofen calcium. Drug Dev Ind Pharm. 1999;25:107–110. doi: 10.1081/DDC-100102150. [DOI] [PubMed] [Google Scholar]
  • 23.Mura P, Faucci MT, Parrini PL, Furlanetto S, Pinzauti S. Influence of the preparation method on the physicochemical properties of ketoprofen-cyclodextrin binary systems. Int J Pharm. 1999;179:117–128. doi: 10.1016/S0378-5173(98)00390-1. [DOI] [PubMed] [Google Scholar]
  • 24.Nesna N, Lou J, Breslow R. The binding of cocaine to cyclodextrins. Bioorg Med Chem Lett. 2000;10:1931–1933. doi: 10.1016/S0960-894X(00)00371-1. [DOI] [PubMed] [Google Scholar]
  • 25.Arias-Blanco MJA, Moyano JR, Martinez JIP, Gines JM. Study of inlusion complex of gliclazide in, α-cyclodextrin. J Pharm Biomed Anal. 1998;18:275–279. doi: 10.1016/S0731-7085(98)00179-4. [DOI] [PubMed] [Google Scholar]
  • 26.Ueda H, Wakamiya T, Endo H, Nagase H, Tomono K, Nagai T. Interaction of cyclomaltononaose (delta-CD) with several drugs. Drug Dev Ind Pharm. 1999;25:951–954. doi: 10.1081/DDC-100102256. [DOI] [PubMed] [Google Scholar]
  • 27.Akasaka H, Endo T, Nagase H, Ueda H, Kobayashi S. Complex formation of cyclomaltononaose delta-cyclodextrin (delta-CD) with macrocyclic compounds. Chem Pharm Bull (Tokyo). 2000;48:1986–1989. doi: 10.1248/cpb.48.1986. [DOI] [PubMed] [Google Scholar]
  • 28.Mura P, Adragna E, Rabasco AM, et al. Effects of the host cavity size and the preparation method on the physicochemical properties of ibuproxam-cyclodextrin systems. Drug Dev Ind Pharm. 1999;25:279–287. doi: 10.1081/DDC-100102172. [DOI] [PubMed] [Google Scholar]
  • 29.Lutka A. Investigation of interaction of promethazine with cyclodextrins in aqueous solution. Acta Pol Pharm. 2002;59:45–51. [PubMed] [Google Scholar]
  • 30.Nagase Y, Hirata M, Wada K, et al. Improvement of some pharmaceutical properties of DY-9760e by sulfobutyl ether beta-cyclodextrin. Int J Pharm. 2001;229:163–172. doi: 10.1016/S0378-5173(01)00851-1. [DOI] [PubMed] [Google Scholar]
  • 31.Jain AC, Adeyeye MC. Hygroscopicity, phase solubility and dissolution of various substituted sulfobutylether beta-cyclodextrins (SBE) and danazol-SBE inclusion complexes. Int J Pharm. 2001;212:177–186. doi: 10.1016/S0378-5173(00)00607-4. [DOI] [PubMed] [Google Scholar]
  • 32.Loftsson T, Peterson DS. Cyclodextrin solubilization of ETH-615, a zwitterionic drug. Drug Dev Ind Pharm. 1998;24:365–370. doi: 10.3109/03639049809085632. [DOI] [PubMed] [Google Scholar]
  • 33.Dalmora MEA, Oliveira AG. Inclusion complex of piroxicam with beta-cyclodextrin and incorporation in hexadecyltrimethylammonium bromide based microemulsion. Int J Pharm. 1999;184:157–164. doi: 10.1016/S0378-5173(99)00099-X. [DOI] [PubMed] [Google Scholar]
  • 34.McCandless R, Yalkowsky SH. Effect of hydroxypropyl-beta-cyclodextrin and pH on the solubility of levemopamil HCl. J Pharm Sci. 1998;87:1639–1642. doi: 10.1021/js9802143. [DOI] [PubMed] [Google Scholar]
  • 35.Kim Y, Oksanen DA, Massefski W, Blake JF, Duffy EM, Chrunyk B. Inclusion complexation of ziprasidone mesylate with beta-cyclodextrin sulfobutyl ether. J Pharm Sci. 1998;87:1560–1567. doi: 10.1021/js980109t. [DOI] [PubMed] [Google Scholar]
  • 36.Tros de Ilarduya MC, Martin C, Goni MM, Martinez-Oharriz MC. Solubilization and interaction of sulindac with beta-cyclodextrin in the solid state and in aqueous solution. Drug Dev Ind Pharm. 1998;24:301–306. doi: 10.3109/03639049809085624. [DOI] [PubMed] [Google Scholar]
  • 37.Diaz D, Bernad MJB, Mora JG, Llaons CME. Solubility, 1H-NMR, and molecular mechanics of mebendazole with different cyclodextrins. Drug Dev Ind Pharm. 1999;25:111–115. doi: 10.1081/DDC-100102151. [DOI] [PubMed] [Google Scholar]
  • 38.Zarzycki PK, Lamparczyk H. The equilibrium constant of β-cyclodextrin-phenolphtalein complex; influence of temperature and tetrahydrofuran addition. J Pharm Biomed Anal. 1998;18:165–179. doi: 10.1016/S0731-7085(98)00150-2. [DOI] [PubMed] [Google Scholar]
  • 39.Jain AC, Adeyeye MC. Hygroscopicity, phase solubility and dissolution of various substituted sulfobutylether beta-cyclodextrins (SBE) and danazol-SBE inclusion complexes. Int J Pharm. 2001;212:177–186. doi: 10.1016/S0378-5173(00)00607-4. [DOI] [PubMed] [Google Scholar]
  • 40.Chowdary KPR, Nalluri BN. Nimesulide and beta-cyclodextrin inclusion complexes: physicochemical characterization and dissolution rate studies. Drug Dev Ind Pharm. 2000;26:1217–1220. doi: 10.1081/DDC-100100995. [DOI] [PubMed] [Google Scholar]
  • 41.Palmeiri GF, Angeli DG, Giovannucci G, Martelli S. Inclusion of methoxytropate in β- and hydroxylpropyl β-cyclodextrins: Comparision of preparation methods. Drug Dev Ind Pharm. 1997;23:27–37. [Google Scholar]
  • 42.Palmieri GF, Wehrle P, Stamm A. Inclusion of vitamin D2 in β-cyclodextrin: evaluation of different complexation methods. Drug Dev Ind Pharm. 1993;19:875–885. doi: 10.3109/03639049309062988. [DOI] [Google Scholar]
  • 43.Moyano JR, Arias MJ, Gines JM, Perez JI, Rabasco AM. Dissolution behavior of oxazepam in the presence of cyclodextrins: evaluation of oxazepam dimeb binary system. Drug Dev Ind Pharm. 1997;23:379–385. [Google Scholar]
  • 44.Pose-Vilarnovo B, Perdomo-Lopez I, Echezarrela-Lopez M, Schroth-Pardo P, Estrada E, Torres-Labandeira JJ. Improvement of water solubility of sulfamethizole through its complexation with β- and hydroxypropyl-β-cyclodextrin—Characterization of the interaction in solution and in solid state. Eur J Pharm Sci. 2001;13:325–331. doi: 10.1016/S0928-0987(01)00131-2. [DOI] [PubMed] [Google Scholar]
  • 45.Mitrevej A, Sinchaipanid N, Junyaprasert V, Warintornuwat L. Effect of grinding of β-cyclodextrin and glibenclamide on tablet properties. Drug Dev Ind Pharm. 1996;22:1237–1241. doi: 10.3109/03639049609063243. [DOI] [Google Scholar]
  • 46.Senoferjan AM, Nanjundaswamy NG, Mahesh S, Murthy SN. Formulation and evaluation of β- cyclodextrin complexes of tenoxicam. Indian J Pharm Sci. 2000;62:119–121. [Google Scholar]
  • 47.Loftsson T, Guomundsdottir TK, Frioriksdottir H. The influence of water-soluble polymers and pH on hydroxypropyl-α-cyclodextrin complexation of drugs. Drug Dev Ind Pharm. 1996;22:401–406. [Google Scholar]
  • 48.Nath BS, Shivkumar HN. A 2(3) Factorial studies on factors influencing Meloxicam β-cyclodextrin complexation for better solubility. Indian J Pharm Sci. 2000;62:129–132. [Google Scholar]
  • 49.Cappello B, Carmignani C, Iervolino M, La Rotonda MI, Saettone MF. Solubilization of tropicamide by hydroxypropyl-beta-cyclodextrin and water-soluble polymers: in vitro/ in vivo studies. Int J Pharm. 2001;213:75–81. doi: 10.1016/S0378-5173(00)00648-7. [DOI] [PubMed] [Google Scholar]
  • 50.Faucci MT, Mura P. Effect of water-soluble polymers on naproxen complexation with natural and chemically modified beta-cyclodextrins. Drug Dev Ind Pharm. 2001;27:909–917. [PubMed] [Google Scholar]
  • 51.Granero G, de Bertorello NM, Longhi M. Solubilization of a naphthoquinone derivative by hydroxypropyl-beta-cyclodextrin (HP-beta-CD) and polyvinylpyroolidone (PVP-K30). The influence of PVP-K30 and pH on solubilizing effect of HP-beta-CD. Boll Chim Farm. 2002;141:63–66. [PubMed] [Google Scholar]
  • 52.Pedersen M. Effect of hydrotropic substances on the complexation of clotrimazole with beta cyclodextrin. Drug Dev Ind Pharm. 1993;19:439–448. doi: 10.3109/03639049309063201. [DOI] [Google Scholar]
  • 53.Veiga F, Fernandes C, Maincent P. Influence of the preparation method on the physicochemical properties of tolbutamide/cyclodextrin binary systems. Drug Dev Ind Pharm. 2001;27:523–532. doi: 10.1081/DDC-100105177. [DOI] [PubMed] [Google Scholar]
  • 54.Tokumura T, Nanda M, Tsushima Y, et al. Enhancement of bioavailability of cinnarizine from its beta-cyclodextrin complex on oral administration with DL-phenylalanine as a competing agent. J Pharm Sci. 1986;75:391–394. doi: 10.1002/jps.2600750415. [DOI] [PubMed] [Google Scholar]
  • 55.Muller BW, Albers E. Effect of hydrotropic substances on the complexation of sparingly soluble drugs with cyclodextrin derivatives and the influence of cyclodextrin complexation on the pharmacokinetics of the drugs. J Pharm Sci. 1991;80:599–604. doi: 10.1002/jps.2600800620. [DOI] [PubMed] [Google Scholar]
  • 56.Redenti E, Szente L, Szetli J. Drug/cyclodextrin/hydroxy acid multicomponent systems. Properties and pharmaceutical applications. J Pharm Sci. 2000;89:1–8. doi: 10.1002/(SICI)1520-6017(200001)89:1<1::AID-JPS1>3.0.CO;2-W. [DOI] [PubMed] [Google Scholar]
  • 57.Li P, Zhao L, Yalkowsky SH. Combined effect of cosolvent and cyclodextrin on solubilization of nonpolar drugs. J Pharm Sci. 1999;88:1107–1111. doi: 10.1021/js990159d. [DOI] [PubMed] [Google Scholar]
  • 58.Miyake K, Irie T, Arima H, et al. Characterization of itraconazole/ 2-hydroxypropyl-beta-cyclodextrin inclusion complex in aqueous propylene glycol solution. Int J Pharm. 1999;179:237–245. doi: 10.1016/S0378-5173(98)00393-7. [DOI] [PubMed] [Google Scholar]
  • 59.Blanchard J, Stefan P. Some important considerations in the use of cyclodextrins. Pharm Res. 1999;16:1796–1798. doi: 10.1023/A:1011930821801. [DOI] [PubMed] [Google Scholar]
  • 60.Muller BW, Brauns U. Hydroxypropyl-beta-cyclodextrin derivatives: influence of average degree of substitution on complexing ability and surface activity. J Pharm Sci. 1986;75:571–572. doi: 10.1002/jps.2600750609. [DOI] [PubMed] [Google Scholar]
  • 61.Zia V, Rajeswski RA, Bornancini ER, Luna EA, Stella VJ. Effect of alkyl chain length and degree of substitution on the complexation of sulfoalkyl ether beta-cyclodextrins with steroids. J Pharm Sci. 1997;86:220–224. doi: 10.1021/js960236u. [DOI] [PubMed] [Google Scholar]
  • 62.CycloLab Cyclodextrin Research & Development Laboratory Web site. Available at: http://www.cyclolab.hu. Accessed May 25, 2005.
  • 63.Wacker-Chemie GmbH Products and Trademarks Web site. Available at: http://www.wacker.com. Accessed May 25, 2005.
  • 64.Sigma-Aldich Web site. Available at: http://www.sigmaaldrich.com/. Accessed May 25, 2005.
  • 65.CyDex Inc Web site. Available at: http://www.cydexinc.com. Accessed May 25, 2005.
  • 66.Inc CTC. Web site. Available at: http://www.cyclodex.com. Accessed May 25, 2005.
  • 67.Cyclodextrins for Pharmaceutical Applications [technical brochure]. 2000. Wayne, NJ: International Specialty Products. Available at: http:// www.ispcorp.com/products/pharma/content/forwhatsnew/cyclodex/ cyclodex.pdf. Accessed May 25, 2005.
  • 68.Mosher G, Thompson DO. Complexation and Cyclodextrins. In: Swarbrick J, Boylan JC, editors. Encyclopedia of Pharmaceutical Technology. 2nd ed. New York, NY: Marcell Dekker; 2002. pp. 531–558. [Google Scholar]
  • 69.Pitha J.Pharmaceutical preparations containing cyclodextrin derivatives. US patent 4 727 064. February 23, 1988.
  • 70.Tasic LM, Jovanovic MD, Djuric ZR. The influence of beta-cyclodextrin on the solubility and dissolution rate of paracetamol solid dispersions. J Pharm Pharmacol. 1992;44:52–55. doi: 10.1111/j.2042-7158.1992.tb14363.x. [DOI] [PubMed] [Google Scholar]
  • 71.Sanghavi NM, Choudhari KB, Matharu RS, Viswanathan L. Inclusion complexation of Lorazepam with beta-cyclodextrin. Drug Dev Ind Pharm. 1993;19:701–712. doi: 10.3109/03639049309062976. [DOI] [Google Scholar]
  • 72.Ahn HJ, Kim KM, Choi SJ, Kim CK. Effects of cyclodextrin derivatives on bioavailability of ketoprofen. Drug Dev Ind Pharm. 1997;23:397–401. doi: 10.3109/03639049709146143. [DOI] [Google Scholar]
  • 73.Dhanaraju MD, Santil Kumaran K, Baskaran T, Moorthy MSR. Enhancement of bioavailability of griseofulvin by its complexation with beta-cyclodextrin. Drug Dev Ind Pharm. 1998;24:583–587. doi: 10.3109/03639049809085663. [DOI] [PubMed] [Google Scholar]
  • 74.Veiga MD, Diaz PJ, Ahsan F. Interactions of griseofulvin with cyclodextrins in solid binary systems. J Pharm Sci. 1998;87:891–900. doi: 10.1021/js970233x. [DOI] [PubMed] [Google Scholar]
  • 75.Becket G, Schep LJ, Tan MY. Improvement of thein vitro dissolution of praziquantal by complexation with alpha-, beta- and gamma-cyclodextrins. Int J Pharm. 1999;179:65–71. doi: 10.1016/S0378-5173(98)00382-2. [DOI] [PubMed] [Google Scholar]
  • 76.Lotter J, Krieg HM, Keizer K, Breytenbach JC. The influence of beta-cyclodextrin on the solubility of chlorthalidone and its enantiomers. Drug Dev Ind Pharm. 1999;25:879–884. doi: 10.1081/DDC-100102248. [DOI] [PubMed] [Google Scholar]
  • 77.Askrabic JM, Rajic DS, Tasic L, Djuric S, Kasa P, Hodi KP. Etodolac and solid dispersion with β-cyclodextrins. Drug Dev Ind Pharm. 1997;23:1123–1129. doi: 10.3109/03639049709150503. [DOI] [Google Scholar]
  • 78.Cavallari C, Abertini B, Rodriguez MLG, Rodriguez L. Improved dissolution behavior of steam granulated piroxicam. Eur J Pharm Biopharm. 2002;54:65–73. doi: 10.1016/S0939-6411(02)00021-8. [DOI] [PubMed] [Google Scholar]
  • 79.Chowdary KPR, Rao SS. Investigation of dissolution enhancement of itraconazole by complexation with β-, and hydroxypropyl-β-cyclodextrins. Indian J Pharm Sci. 2001;63:438–441. [Google Scholar]
  • 80.Ghorab MK, Adeyeye MC. Enhancement of ibuprofen dissolution via wet granulation with beta cyclodextrin. Pharm Dev Technol. 2001;6:305–314. doi: 10.1081/PDT-100002611. [DOI] [PubMed] [Google Scholar]
  • 81.Arias MJ, Moyano JR, Munoz P, Gines JM, Justo A, Giordano F. Study of omeprazole-gamma-cyclodextrin complexation in the solid state. Drug Dev Ind Pharm. 2000;26:253–259. doi: 10.1081/DDC-100100353. [DOI] [PubMed] [Google Scholar]
  • 82.Uekama K, Fujinaga T, Hirayama F, et al. Improvement of the oral bioavailability of digitalis glycosides by cyclodextrin complexation. J Pharm Sci. 1983;72:1338–1341. doi: 10.1002/jps.2600721125. [DOI] [PubMed] [Google Scholar]
  • 83.Londhe V, Nagarsenker M. Comparision between Hydroxypropyl-β-cyclodextrin and polyvinyl pyrrolidine as carriers for carbamazepine solid dispersions. Indian J Pharm Sci. 1999;61:237–240. [Google Scholar]
  • 84.Trapani G, Latrofa A, Franco M, et al. Complexation of zolpidem with 2-hydroxypropyl-β-, methyl-β-, 2-hydroxypropyl-γ-cyclodextrins: Effect on aqueous solubility, dissolution rate and ataxic activity in rats. J Pharm Sci. 2000;89:1443–1451. doi: 10.1002/1520-6017(200011)89:11<1443::AID-JPS7>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  • 85.Latrofa A, Trapani G, Franco M, et al. Complexation of phenytoin with some hydrophilic cyclodextrins: Effect on aqueous solubility, dissolution rate and anti-covulsant activity in mice. Eur J Pharm Biopharm. 2001;52:65–73. doi: 10.1016/S0939-6411(01)00144-8. [DOI] [PubMed] [Google Scholar]
  • 86.Miyake K, Arima H, Hiramaya F, et al. Improvement of solubility and oral bioavailability of rutin by complexation with 2-hydroxypropyl-beta-cyclodextrin. Pharm Dev Technol. 2000;5:399–407. doi: 10.1081/PDT-100100556. [DOI] [PubMed] [Google Scholar]
  • 87.Bettinetti G, Gazzaniga A, Mura P, Giordano F, Setti M. Thermal behavior and dissolution properties of naproxen in combinations with chemically modified beta-cyclodextrins. Drug Dev Ind Pharm. 1992;18:39–53. doi: 10.3109/03639049209043682. [DOI] [Google Scholar]
  • 88.Kang J, Kumar V, Yang D, Chowdhury PR, Hohl RJ. Cyclodextrin complexation: influence on the solubility, stability, and cytotoxicity of camptothecin, an antineoplastic agent. Eur J Pharm Sci. 2002;15:163–170. doi: 10.1016/S0928-0987(01)00214-7. [DOI] [PubMed] [Google Scholar]
  • 89.Zhao L, Li P, Yalkowsky SH. Solubilization of fluasterone. J Pharm Sci. 1999;88:967–969. doi: 10.1021/js9901413. [DOI] [PubMed] [Google Scholar]
  • 90.Kaukonen AM, Lennernas H, Mannermaa JP. Water-soluble Beta cyclodextrin in paediatric oral solutions of spiranolactone: preclinical evaluation of spiranolactone bioavailability from solutions of beta cyclodextrin derivatives in rats. J Pharm Pharmacol. 1998;50:611–619. doi: 10.1111/j.2042-7158.1998.tb06894.x. [DOI] [PubMed] [Google Scholar]
  • 91.Arima H, Yunomae K, Miyake K, Irie T, Hirayama F, Uekama K. Comparative studies of the enhancing effects of cyclodextrins on the solubility and oral bioavailability of tacrolimus in rats. J Pharm Sci. 2001;90:690–701. doi: 10.1002/jps.1025. [DOI] [PubMed] [Google Scholar]
  • 92.Bettinetti G, Mura P, Faucci MT, Sorrenti M, Setti M. Interaction of naproxen with noncrystalline acetyl beta- and acetyl gamma-cyclodextrins in the solid and liquid state. Eur J Pharm Sci. 2002;15:21–29. doi: 10.1016/S0928-0987(01)00199-3. [DOI] [PubMed] [Google Scholar]
  • 93.Ueda H, Ou D, Endo T, Nagase H, Tomono K, Nagai T. Evaluation of a sulfobutyl ether beta-cyclodextrin as a solubilizing/stabilizing agent for several drugs. Drug Dev Ind Pharm. 1998;24:863–867. doi: 10.3109/03639049809088532. [DOI] [PubMed] [Google Scholar]
  • 94.Sangalli ME, Zema L, Moroni A, Foppoli A, Giordano F, Gazzania A. Influence of β-cylodextrin on the release of poorly soluble drugs from inert and hydrophilic heterogeneous polymeric matrices. Biomaterials. 2001;22:2647–2651. doi: 10.1016/S0142-9612(01)00005-9. [DOI] [PubMed] [Google Scholar]
  • 95.Pina ME, Veiga F. The influence of diluent on the release of theophylline from hydrophilic matrix tablets. Drug Dev Ind Pharm. 2000;26:1125–1128. doi: 10.1081/DDC-100100279. [DOI] [PubMed] [Google Scholar]
  • 96.Loftsson T, Stefánsson E. Effect of cyclodextrins on topical drug delivery to the eye. Drug Dev Ind Pharm. 1997;23:473–481. [Google Scholar]
  • 97.Van Dorne H. Interaction between cyclodextrins and ophthalmic drugs. Eur J Pharm Biopharm. 1993;39:133–139. [Google Scholar]
  • 98.Loftsson T, Másson M, Stefánsson E. Cyclodextrins as permeation enhancers. 17th Pharmaceutical Technology Conference and Exhibition: March 24–26, 1997; Dublin, Ireland.
  • 99.Loftsson T, Leeves N, Bjomsdottir B, Duffy L, Masson M. Effect of cyclodextrins and polymers on triclosan availability and substantivity in toothpastesin vivo. J Pharm Sci. 1999;88:1254–1258. doi: 10.1021/js9902466. [DOI] [PubMed] [Google Scholar]
  • 100.Willems L, Geest RV, de Beule K. Itraconazole oral solution and intravenous formulations: a review of pharmacokinetics and pharmacodynamics. J Clin Pharm Ther. 2001;26:159–169. doi: 10.1046/j.1365-2710.2001.00338.x. [DOI] [PubMed] [Google Scholar]
  • 101.Yang T, Hussain A, Paulson J, Abbruscato TJ, Ahsan F. Cyclodextrins in nasal delivery of low-molecular-weight heparins:in vivo andin vitro studies. Pharm Res. 2004;21:1127–1136. doi: 10.1023/B:PHAM.0000032998.84488.7a. [DOI] [PubMed] [Google Scholar]
  • 102.Watanabe Y, Kiriyama M, Ito R, et al. Pharmacodynamics and pharmacokinetics of recombinant human granulocyte colony-stimulating factor (rhG-CSF) after administration of a rectal dosage vehicle. Biol Pharm Bull. 1996;19:1059–1063. doi: 10.1248/bpb.19.1059. [DOI] [PubMed] [Google Scholar]
  • 103.Nicolazzi C, Venard V, Le Faou A, Finance C. In vitro antiviral activity of the gancyclovir complexed with beta cyclodextrin on human cytomegalovirus strains. Antiviral Res. 2002;54:121–127. doi: 10.1016/S0166-3542(01)00218-2. [DOI] [PubMed] [Google Scholar]
  • 104.Blanchard J, Ugwu SO, Bhardwaj R, Dorr RT. Development and testing of an improved of phenytoin using 2-hydroxypropyl-beta-cyclodextrin. Pharm Dev Technol. 2000;5:333–338. doi: 10.1081/PDT-100100548. [DOI] [PubMed] [Google Scholar]
  • 105.Scalia S, Villani S, Casolari A. Inclusion complexation of the sunscreening agent 2-ethyl hexyl-p-dimethyl aminobenzoate with hydroxypropyl-β-cyclodextrin: effect on photostability. J Pharm Pharmacol. 1999;51:1367–1374. doi: 10.1211/0022357991777182. [DOI] [PubMed] [Google Scholar]
  • 106.Serni U. Rheumatic diseases—clinical experience with piroxicam-beta-cyclodextrin. Eur J Rheumatol Inflamm. 1993;12:47–54. [PubMed] [Google Scholar]
  • 107.Kim JH, Lee SK, Ki MH, et al. Development of parenteral formulation for a novel angiogenesis inhibitor, CKD-732 through complexation with hydroxypropyl-β-cyclodextrin. Int J Pharm. 2004;272:79–89. doi: 10.1016/j.ijpharm.2003.11.034. [DOI] [PubMed] [Google Scholar]
  • 108.Nagase Y, Arima H, Wada K, et al. Inhibitory effect of sulfobutyl ether beta-cyclodextrin on DY-9760e-induced cellular damage:In vitro andin vivo studies. J Pharm Sci. 2003;92:2466–2474. doi: 10.1002/jps.10517. [DOI] [PubMed] [Google Scholar]
  • 109.Loftssona T, Jarvinen T. Cyclodextrins in ophthalmic drug delivery. Adv Drug Deliv Rev. 1999;36:59–79. doi: 10.1016/S0169-409X(98)00055-6. [DOI] [PubMed] [Google Scholar]
  • 110.Babu R, Pandit JK. Effect of aging on the dissolution stability of glibenclamide/beta-cyclodextrin complex. Drug Dev Ind Pharm. 1999;25:1215–1219. doi: 10.1081/DDC-100102291. [DOI] [PubMed] [Google Scholar]
  • 111.Cwiertnia B, Hladon T, Stobiecki M. Stability of Diclofenac sodium in the inclusion complex in the beta cyclodextrin in the solid state. J Pharm Pharmacol. 1999;51:1213–1218. doi: 10.1211/0022357991776930. [DOI] [PubMed] [Google Scholar]
  • 112.Li J, Guo Y, Zografi G. The solid-state stability of amorphous quinapril in the presence of beta-cyclodextrins. J Pharm Sci. 2002;91:229–243. doi: 10.1002/jps.10014. [DOI] [PubMed] [Google Scholar]
  • 113.Brewster ME, Loftsson T, Estes KS, Lin JL, Friðriksdóttir H. Effects of various cyclodextrins on solution stability and dissolution rate of doxorubicin hydrochloride. Int J Pharm. 1992;79:289–299. doi: 10.1016/0378-5173(92)90121-H. [DOI] [Google Scholar]
  • 114.Ma DQ, Rajewski RA, Velde DV, Stella VJ. Comparative effects of (SBE)7m-beta-CD and HP-beta-CD on the stability of two anti-neoplastic agents, melphalan and carmustine. J Pharm Sci. 2000;89:275–287. doi: 10.1002/(SICI)1520-6017(200002)89:2<275::AID-JPS15>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
  • 115.Singla AK, Garg A, Aggarwal D. Paclitaxel and its formulations. Int J Pharm. 2002;235:179–192. doi: 10.1016/S0378-5173(01)00986-3. [DOI] [PubMed] [Google Scholar]
  • 116.Jarho P, Vander Velde D, Stella VJ. Cyclodextrin-catalyzed deacetylation of spironolactone is pH and cyclodextrin dependent. J Pharm Sci. 2000;89:241–249. doi: 10.1002/(SICI)1520-6017(200002)89:2<241::AID-JPS11>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
  • 117.Sortino S, Giuffrida S, De Guldi G, et al. The photochemistry of flutamide and its inclusion complex with beta-cyclodextrin: Dramatic effect of the microenvironment on the nature and on the efficiency of the photodegradation pathways. Photochem Photobiol. 2001;73:6–13. doi: 10.1562/0031-8655(2001)073<0006:TPOFAI>2.0.CO;2. [DOI] [PubMed] [Google Scholar]
  • 118.Mielcarek J. Photochemical stability of the inclusion complexes formed by modified 1, 4-dihydropyridine derivatives with beta-cyclodextrin. J Pharm Biomed Anal. 1997;15:681–686. doi: 10.1016/S0731-7085(96)01900-0. [DOI] [PubMed] [Google Scholar]
  • 119.Lutka A, Koziara J. Interaction of trimeprazine with cyclodextrins in aqueous solution. Chem Pharm Bull (Tokyo). 2000;57:369–374. [PubMed] [Google Scholar]
  • 120.Croyle MA, Cheng X, Wilson JM. Development of formulations that enhance physical stability of viral vectors for gene therapy. Gene Ther. 2001;8:1281–1290. doi: 10.1038/sj.gt.3301527. [DOI] [PubMed] [Google Scholar]
  • 121.Dwivedi AK, Kulkami D, Khanna M, Singh S. Effect of cyclodextrins on the stability of new antimalarial compound N1-31-Acetyl/-41, 51-Dihydro-21 Furanyl-N4-(6-Methoxy, 8-Quinolinyl)-1-4-Pentane diamine. Ind J Pharm Sci. 1999;61:175–177. [Google Scholar]
  • 122.Koester LS, Guterres SS, Le Roch M, Lima VLE, Zuanazzi JA, Bassani VI. Ofloxacin/beta-cyclodextrin complexation. Drug Dev Ind Pharm. 2001;27:533–540. doi: 10.1081/DDC-100105178. [DOI] [PubMed] [Google Scholar]
  • 123.Choi HG, Lee BJ, Han JH, et al. Terfenadine-beta-Cyclodextrin inclusion complex with antihistaminic activity enhancement. Drug Dev Ind Pharm. 2001;27:857–862. doi: 10.1081/DDC-100107250. [DOI] [PubMed] [Google Scholar]
  • 124.Aggarwal S, Singh PN, Mishra B. Studies on solubility and hypoglycemic activity of gliclazide beta-cyclodextrin-hydroxypropyl-methylcellulose complexes. Pharmazie. 2002;57:191–193. [PubMed] [Google Scholar]
  • 125.Veiga F, Fernandes C, Teixeira F. Oral bioavailability and hypoglycaemic activity of tolbutamide/cyclodextrin inclusion complexes. Int J Pharm. 2000;202:165–171. doi: 10.1016/S0378-5173(00)00445-2. [DOI] [PubMed] [Google Scholar]
  • 126.Fathy M, Sheha M. In vitro and in vivo evaluation of amylobarbitone/hydroxypropyl-β-cyclodextrin complex prepared by a freeze-drying method. Pharmazie. 2000;55:513–517. [PubMed] [Google Scholar]
  • 127.Zuo Z, Kwon G, Stevenson B, Diakur J, Wiebe LI. Flutamide-Hydroxy proyl- β-cyclodextrin complex: formulation, physical characterization, and absorption studies using the Caco-2 in vitro model. J Pharm Pharm Sci. 2000;3:220–227. [PubMed] [Google Scholar]
  • 128.Yoo SD, Yoon BM, Lee HS, Lee KC. Increased bioavailability of clomipramine after sublingual administration in rats. J Pharm Sci. 1999;88:1119–1121. doi: 10.1021/js990163p. [DOI] [PubMed] [Google Scholar]
  • 129.Pitha J, Harman SM, Michel ME. Hydrophilic cyclodextrin derivatives enable effective oral administration of steroidal hormones. J Pharm Sci. 1986;75:165–167. doi: 10.1002/jps.2600750213. [DOI] [PubMed] [Google Scholar]
  • 130.Pitha J, Anaissie EJ, Uekama K. Gamma-cyclodextrin: testosterone complex suitable for sublingual administration. J Pharm Sci. 1987;76:788–790. doi: 10.1002/jps.2600761007. [DOI] [PubMed] [Google Scholar]
  • 131.Farag Badawy SI, Ghorab MM, Adeyeye CM. Bioavailability of danazol-hydroxypropyl-á-cylodextrin complex by different routes of administration. Int J Pharm. 1996;145:137–143. doi: 10.1016/S0378-5173(96)04763-1. [DOI] [Google Scholar]
  • 132.Jain AC, Aungust BJ, Adeyeye MC. Development and in vivo evaluation of buccal tablets prepared using danazol-sulfobutylether 7 beta-cyclodextrin (SBE 7) complexes. J Pharm Sci. 2002;91:1659–1668. doi: 10.1002/jps.10163. [DOI] [PubMed] [Google Scholar]
  • 133.Garcia-Rodriguez JJ, Torrado J, Bolas F. Improving bioavailability and anthelmentic activity of albendazole by preparing albendazole cyclodextrin complex. Parasite. 2001;8:S188–S190. doi: 10.1051/parasite/200108s2188. [DOI] [PubMed] [Google Scholar]
  • 134.Jacobsen J, Bjerregaard S, Pedersen M. Cyclodextrin inclusion complexes of antimycotics intended to act in the oral cavity-drug supersaturation, toxicity on TR146 cells and release from a delivery system. Eur J Pharm Biopharm. 1999;48:217–224. doi: 10.1016/S0939-6411(99)00043-0. [DOI] [PubMed] [Google Scholar]
  • 135.Okimoto K, Ohike A, Ibuki R, et al. Design and evaluation of an osmotic pump tablet (OPT) for chlorpromazine using (SBE)7m-beta-CD. Pharm Res. 1999;16:549–554. doi: 10.1023/A:1018827214223. [DOI] [PubMed] [Google Scholar]
  • 136.Okimoto K, Miyake M, Ohnishi N, et al. Design and evaluation of an osmotic pump tablet (OPT) for prednisolone, a poorly water soluble drug, using (SBE)7m-beta-CD. Pharm Res. 1998;15:1562–1568. doi: 10.1023/A:1011955117026. [DOI] [PubMed] [Google Scholar]
  • 137.Funasaki N, Kawaguchi R, Hada S, Neya S. Ultraviolet spectroscopic estimation of microenvironments and bitter tastes of oxyphenonium bromide in cyclodextrin solutions. J Pharm Sci. 1999;88:759–762. doi: 10.1021/js990026s. [DOI] [PubMed] [Google Scholar]
  • 138.Stevens DA. Intraconazole in cyclodextrin solution. Pharmacotherapy. 1999;9:603–611. doi: 10.1592/phco.19.8.603.31529. [DOI] [PubMed] [Google Scholar]
  • 139.Shinoda T, Kagatani S, Maeda A, et al. Sugar-branched-cyclodextrins as injectable drug carriers in mice. Drug Dev Ind Pharm. 1999;25:1185–1192. doi: 10.1081/DDC-100102286. [DOI] [PubMed] [Google Scholar]
  • 140.Blanchard J, Ugwu SO, Bhardwaj R, Dorr T. Anhydrous carbopol polymer gels for the topical delivery of oxygen/water sensitive compounds. Pharm Dev Technol. 2000;7:249–255. doi: 10.1081/pdt-120003492. [DOI] [PubMed] [Google Scholar]
  • 141.Piel G, Evrard B, Van Hees T, Delattre L. Comparison of the IV pharmacokinetics in sheep of miconazole-cyclodextrin solutions and a micellar solution. Int J Pharm. 1999;180:41–45. doi: 10.1016/S0378-5173(98)00403-7. [DOI] [PubMed] [Google Scholar]
  • 142.Sideris EE, Koupparis MA, Macheras PE. Effect of cyclodextrins on protein binding of drugs: the diflunisal/hydroxypropyl-beta-cyclodextrin model case. Pharm Res. 1994;11:90–95. doi: 10.1023/A:1018901912619. [DOI] [PubMed] [Google Scholar]
  • 143.Grosse PY, Bressoile F, Rouanet P, Joulia JM, Pinguest F. Methyl-beta-cyclodextrin and doxorubicin pharmacokinetics and tissue concentrations following bolus injection of these drugs alone or together in the rabbit. Int J Pharm. 1999;180:215–223. doi: 10.1016/S0378-5173(99)00008-3. [DOI] [PubMed] [Google Scholar]
  • 144.Hirayama F, Mieda S, Miyamoto Y, Arima H, Uekama K. Heptakis (2, 6-di-O-methyl-3-O-acetyl)-beta-cyclodextrin: a water-soluble cyclodextrin derivative with low hemolytic activity. J Pharm Sci. 1999;88:970–975. doi: 10.1021/js990128i. [DOI] [PubMed] [Google Scholar]
  • 145.Saarinen-Savolainen P, Jarvinen T, Araki-Sasaki K, Watanabe H, Urtti A. Evaluation of cytotoxicity of various ophthalmic drugs, eye drop excipients and cyclodextrins in an immortalized human corneal epithelial cell line. Pharm Res. 1998;15:1275–1280. doi: 10.1023/A:1011956327987. [DOI] [PubMed] [Google Scholar]
  • 146.Siefert B, Keipert S. Influence of alpha-cyclodextrin and hydroxyalkylated β-cyclodextrin derivatives on the corneal uptake and permeation aqueous pilocarpine-HCL solutions. J Pharm Sci. 1997;86:716–720. doi: 10.1021/js960389h. [DOI] [PubMed] [Google Scholar]
  • 147.Becirevic-Lacan M, Filipovic-Grcic J. Effect of hydroxypropyl-beta-cyclodextrin on hydrocortisone dissolution from films intended for ocular drug delivery. Pharmazie. 2000;55:518–520. [PubMed] [Google Scholar]
  • 148.Aktas Y, Unlu N, Orhan M, Irkec M, Hincal AA. Influence of hydroxypropyl β-cyclodextrin on the corneal permeation of pilocarpine. Drug Dev Ind Pharm. 2003;29:223–230. doi: 10.1081/DDC-120016730. [DOI] [PubMed] [Google Scholar]
  • 149.Merkus FW, Verhoef JC, Marttin E, et al. Cyclodextrin in nasal drug delivery. Adv Drug Deliv Rev. 1999;36:41–57. doi: 10.1016/S0169-409X(98)00054-4. [DOI] [PubMed] [Google Scholar]
  • 150.Loftsson T, Gudmundsdottir H, Sigurjonsdottir JF, et al. Cyclodextrin solubilization of benzodiazepines: formulation of midazolam nasal spray. Int J Pharm. 2001;212:29–40. doi: 10.1016/S0378-5173(00)00580-9. [DOI] [PubMed] [Google Scholar]
  • 151.Zhang Y, Jiang XG, Yao J. Nasal absorption enhancement of insulin by sodium deoxycholate in combination with cyclodextrins. Acta Pharmacol Sin. 2001;22:1051–1056. [PubMed] [Google Scholar]
  • 152.Srichana T, Suedee R, Reanmongkol W. Cyclodextrin as a potential drug carrier in salbutamol dry powder aerosols: the in vitro deposition and toxicity studies of the complexes. Respir Med. 2001;95:513–519. doi: 10.1053/rmed.2001.1079. [DOI] [PubMed] [Google Scholar]
  • 153.Gudmundsdottir H, Sigurjonsdottir JF, Masson M, Fjalldal O, Stefansson E, Loftsson T. Intranasal administration of midazolam in a cyclodextrin based formulation: bioavailability and clinical evaluation in humans. Pharmazie. 2001;56:963–966. [PubMed] [Google Scholar]
  • 154.Uekama K, Kondo T, Nakamura K, et al. Modification of rectal absorption of morphine from hollow-type suppositories with a combination of alpha-cyclodextrin and viscosity-enhancing polysaccharide. J Pharm Sci. 1995;84:15–20. doi: 10.1002/jps.2600840106. [DOI] [PubMed] [Google Scholar]
  • 155.Kowari K, Hirosawa I, Kurai H, Utoguchi N, Fujii M, Watanabe Y. Pharmacokinetics and pharmacodynamics of human chorionic gonadotropin (hCG) after rectal administration of hollow-type suppositories containing hCG. Biol Pharm Bull. 2002;25:678–681. doi: 10.1248/bpb.25.678. [DOI] [PubMed] [Google Scholar]
  • 156.Hirayama F, Uekama K. Cyclodextrin-based controlled drug release system. Adv Drug Deliv Rev. 1999;36:125–141. doi: 10.1016/S0169-409X(98)00058-1. [DOI] [PubMed] [Google Scholar]
  • 157.Sinha VR, Nanda A, Kumria R. Cyclodextrins as sustained-release carriers.Pharmaceutical Technology. 2002. Available at: http://www. pharmtech.com. Accessed May 25, 2005.
  • 158.Horiuchi Y, Hirayama F, Uekama K. Slow-release characteristics of diltiazem from ethylated β-cyclodextrin complex. J Pharm Sci. 1990;79:128–132. doi: 10.1002/jps.2600790211. [DOI] [PubMed] [Google Scholar]
  • 159.Hirayama F, Hirashima N, Abe K, Uekama K, Ijitsu T, Ueno M. Utilization of diethyl-beta-cyclodextrin as a sustained-release carrier for isosorbide dinitrate. J Pharm Sci. 1988;77:233–236. doi: 10.1002/jps.2600770310. [DOI] [PubMed] [Google Scholar]
  • 160.Uekama K, Horikawa T, Yamanaka M, Hirayama F. Peracylated β-cyclodextrins as, novel sustained-release carriers for a water-soluble drug, molsidomine. J Pharm Pharmacol. 1994;46:714–717. doi: 10.1111/j.2042-7158.1994.tb03889.x. [DOI] [PubMed] [Google Scholar]
  • 161.Wang Z, Horikawa T, Hirayama F, Uekama K. Design and in vitro evaluation of a modified-release oral dosage form of nifedipine by hybridization of hydroxypropyl-beta-cyclodextrin and hydroxypropyl-cellulose. J Pharm Pharmacol. 1993;45:942–946. doi: 10.1111/j.2042-7158.1993.tb05631.x. [DOI] [PubMed] [Google Scholar]
  • 162.Quaglia F, Varricchio G, Miro A, La Rotonda MI, Larobina D, Mensitieri G. Modulation of drug release from hydrogels by using cyclodextrins: the case of nicardipine/ beta-cyclodextrin system in crosslinked polyethylenglycol. J Control Release. 2001;71:329–337. doi: 10.1016/S0168-3659(01)00242-5. [DOI] [PubMed] [Google Scholar]
  • 163.Rao VM, Haslam JL, Stella VJ. Controlled and complete release of a model poorly water-soluble drug, prednisolone from hydroxypropyl methylcellulose matrix tablets using (SBE) (7m)-beta-cyclodextrin as a solubilizing agent. J Pharm Sci. 2001;90:807–816. doi: 10.1002/jps.1034. [DOI] [PubMed] [Google Scholar]
  • 164.Fernandes CM, Teresa Viera M, Veiga FJ. Physicochemical characterization and in vitro dissolution behavior of nicardipine-cyclodextrins inclusion compounds. Eur J Pharm Sci. 2002;15:79–88. doi: 10.1016/S0928-0987(01)00208-1. [DOI] [PubMed] [Google Scholar]
  • 165.Fernandes CM, Ramos P, Falcao AC, Veiga FJ. Hydrophilic and hydrophobic cyclodextrins in a new sustained release oral formulation of nicardipine: in vitro evaluation bioavailability studies in rabbits. J Control Release. 2003;88:127–134. doi: 10.1016/S0168-3659(02)00465-0. [DOI] [PubMed] [Google Scholar]
  • 166.Chowdary KPR, Reddy GK. Complexes of nifedipine with β- and hydroxypropyl-β-cyclodextrin in the design of nifedipine SR tablets. Ind J Pharm Sci. 2002;64:142–146. [Google Scholar]
  • 167.Burgos AE, Belchior JC, Sinisterra RD. Controlled release of rhodium (II) carboxylates and their association complexes with cyclodextrins from hydroxyapatite matrix. Biomaterials. 2002;23:2519–2526. doi: 10.1016/S0142-9612(01)00386-6. [DOI] [PubMed] [Google Scholar]
  • 168.Minami K, Hirayama F, Uekama K. Colon-specific drug delivery based on a cyclodextrin prodrug: release behavior of biphenylylacetic acid from its cyclodextrin conjugates in rat intestinal tracts after oral administration. J Pharm Sci. 1998;87:715–720. doi: 10.1021/js9704339. [DOI] [PubMed] [Google Scholar]
  • 169.Hirayama F, Ogata T, Yano H, et al. Release characteristics of a short-chain fatty acid, n-butyric acid from its beta-cyclodextrin ester conjugate in rat biological media. J Pharm Sci. 2000;89:1486–1495. doi: 10.1002/1520-6017(200011)89:11<1486::AID-JPS11>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]
  • 170.Yano H, Hirayama F, Kamada M, Arima H, Uekama K. Colon-specific delivery of prednisolone-appended alpha-cyclodextrin conjugate: alleviation of systemic side effect after oral administration. J Control Release. 2002;79:103–112. doi: 10.1016/S0168-3659(01)00532-6. [DOI] [PubMed] [Google Scholar]
  • 171.Lopez MEV, Reyes LN, Igea SA, Espinar FJO, Mendez JB. Formulation of triamcinolone acetonide pellets suitable for coating and colon targeting. Int J Pharm. 1999;79:229–235. doi: 10.1016/S0378-5173(98)00369-X. [DOI] [PubMed] [Google Scholar]
  • 172.Irie T, Uekama K. Cyclodextrins in peptide and protein delivery. Adv Drug Deliv Rev. 1999;36:101–123. doi: 10.1016/S0169-409X(98)00057-X. [DOI] [PubMed] [Google Scholar]
  • 173.Augustijns PF, Bradshaw TP, Gan LSL, Hendren RW, Thakker DR. Evidence for a polarized efflux system in caco-2 cells capable of modulating cyclosporin a transport. Biochem Biophys Res Commun. 1993;197:360–365. doi: 10.1006/bbrc.1993.2487. [DOI] [PubMed] [Google Scholar]
  • 174.Burton PS, Conradi RA, Hilgers AR, Ho NFH. Evidence for a polarized efflux system for peptides in the apical membrane of caco-2 cells. Biochem Biophys Res Commun. 1993;190:760–766. doi: 10.1006/bbrc.1993.1114. [DOI] [PubMed] [Google Scholar]
  • 175.Ueda K, Shimabuku AM, Konishi H, et al. Functional expression of human P-glycoprotein inSchizosaccharomyces pombe. FEBS Lett. 1993;330:279–282. doi: 10.1016/0014-5793(93)80888-2. [DOI] [PubMed] [Google Scholar]
  • 176.Loe DW, Sharom FJ. Interaction of multidrug-resistant Chinese hamster ovary cells with the peptide ionophore gramicidin D. Biochim Biophys Acta. 1994;1190:72–84. doi: 10.1016/0005-2736(94)90035-3. [DOI] [PubMed] [Google Scholar]
  • 177.Takahashi H, Kim RB, Perry PR, Wilkinson GR. Characterization of the hepatic canalicular membrane transport of a model oligopeptide: ditekiren. J Pharm Exp Therapeutics. 1997;281:297–303. [PubMed] [Google Scholar]
  • 178.Sharom FJ, Xiaohong YU, DioDiodato G, Chu JWK. Synthetic hydrophobic peptides are substrates for P-glycoprotein and stimulate drug transport. Biochem J. 1996;320:421–428. doi: 10.1042/bj3200421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 179.McNally EJ, Park JY. Peptides and Proteins- Oral Absorption. In: Swarbrick J, Boylan JC, editors. Encyclopedia of Pharmaceutical Technology. 2nd ed. New York, NY: Marcell Dekker; 2002. pp. 2096–2113. [Google Scholar]
  • 180.Arima H, Yunomae K, Morikawa T, Hirayama F, Uekama K. Contribution of cholesterol and phospholipids to inhibitory effect of dimethyl-β-cyclodextrin on efflux function of P-glycoprotein and multidrug resistance-associated protein 2 in vinblastine-resistant Caco-2 cell monolayers. Pharm Res. 2004;21:625–634. doi: 10.1023/B:PHAM.0000022409.27896.d4. [DOI] [PubMed] [Google Scholar]
  • 181.Arima H, Yunomae K, Hirayama F, Uekama K. Contribution of P-glycoprotein to the enhancing effects of dimethyl-β-cyclodextrin on oral bioavailability of Tacrolimus. J Pharm Exp Therapeutics. 2001;297:547–555. [PubMed] [Google Scholar]
  • 182.Verhoef JC, Schipper NGM, Romejin SG, Merkus FWHM. The potential of cyclodextrins as absorption enhancers in nasal delivery of peptide drugs. J Control Release. 1994;29:351–360. doi: 10.1016/0168-3659(94)90080-9. [DOI] [Google Scholar]
  • 183.Jerry N, Anitha Y, Sharma CP, Sony P. In vivo, absorption studies of insulin from an oral delivery system. Drug Deliv. 2001;8:19–23. doi: 10.1080/107175401300002711. [DOI] [PubMed] [Google Scholar]
  • 184.Dass CR. Vehicles for oligonucleotide delivery. J Pharm Pharmacol. 2002;54:3–27. doi: 10.1211/0022357021771887. [DOI] [PubMed] [Google Scholar]
  • 185.Redenti E, Pietra C, Gerlozy A, Szente L. Cyclodextrins in oligonucleotide delivery. Adv Drug Deliv Rev. 2001;53:235–244. doi: 10.1016/S0169-409X(01)00230-7. [DOI] [PubMed] [Google Scholar]
  • 186.Driscoll CO, Darcy R. Cyclodextrin constructs for delivery of genotherapeutic agents.Business Briefing: Pharmatech2002. Available at: http://www.bbriefingscom/pdf/17/ACF9C6C.pdf. Accessed May 25, 2005.
  • 187.Hwang SJ, Bellocq NC, Davis ME. Effects of structure of β-cyclodextrin-containing polymers on gene delivery. Bioconjugate Chem. 2001;12:280–290. doi: 10.1021/bc0001084. [DOI] [PubMed] [Google Scholar]
  • 188.Pun SH, Davis DE. Development of a nonviral gene delivery vehicle for systemic application. Bioconjugate Chem. 2002;13:630–639. doi: 10.1021/bc0155768. [DOI] [PubMed] [Google Scholar]
  • 189.Croyle MA, Roessler BJ, Hsu CP, Sun R, Amidon GL. Beta cyclodextrins enhance adenoviral-mediated gene delivery to the intestine. Pharm Res. 1998;15:1348–1355. doi: 10.1023/A:1011985101580. [DOI] [PubMed] [Google Scholar]
  • 190.Lopez RF, Collett JH, Bently MV. Influence of cyclodextrin complexation on the in vitro permeation and skin metabolism of dexamethasone. Int J Pharm. 2000;200:127–132. doi: 10.1016/S0378-5173(00)00365-3. [DOI] [PubMed] [Google Scholar]
  • 191.Orienti I, Zecchi V, Bernabei S, Sentimenti S, Fini A. Diffusion of ketoprofen from coprecipitates through a non porous lipidic membrane. Boll Chim Farm. 1989;128:336–343. [PubMed] [Google Scholar]
  • 192.Loftsson T, Masson M. Cyclodextrins in topical drug formulations: theory and practice. Int J Pharm. 2001;225:15–30. doi: 10.1016/S0378-5173(01)00761-X. [DOI] [PubMed] [Google Scholar]
  • 193.Chang SL, Banga AK. Transdermal iontophoretic delivery of hydrocortisone from cyclodextrin solutions. J Pharm Pharmacol. 1988;50:635–640. doi: 10.1111/j.2042-7158.1998.tb06897.x. [DOI] [PubMed] [Google Scholar]
  • 194.Doliwa A, Santoyo S, Ygartua P. Transdermal iontophoresis and skin retention of piroxicam from gels containing piroxicam: hydroxypropyl-beta-cyclodextrin complexes. Drug Dev Ind Pharm. 2001;27:751–758. doi: 10.1081/DDC-100107238. [DOI] [PubMed] [Google Scholar]
  • 195.Tanaka M, Matsuda H, Sumiyoshi H, et al. 2-Hydroxy- propylated cyclodextrins as a sustained release carrier for fragrance materials. Chem Pharm Bull (Tokyo). 1996;44:416–420. [Google Scholar]
  • 196.Buschmann HJ, Schollmeyer E. Applications of cyclodextrins in cosmetic products: a review. J Cosmet Sci. 2002;53:185–191. [PubMed] [Google Scholar]
  • 197.Brewster ME, Loftsson T. The use of chemically modified cyclodextrins in the development of formulations for chemical delivery systems. Pharmazie. 2002;57:94–101. [PubMed] [Google Scholar]
  • 198.Wu WM, Wu J, Bodor N. Effect of 2-hydroxypropyl-beta-cyclodextrin on the solubility, stability, and pharmacological activity of the chemical delivery system of TRH analogs. Pharmazie. 2002;57:130–134. [PubMed] [Google Scholar]
  • 199.McCormack B, Gregoriadis G. Entrapment of cyclodextrin-drug complexes into liposomes: potential advantages in drug delivery. J Drug Target. 1994;2:449–454. doi: 10.3109/10611869408996821. [DOI] [PubMed] [Google Scholar]
  • 200.McCormack B, Gregoriadis G. Drugs-in-cyclodextrins-in-liposomes: an approach to controlling the fate of water insoluble drugs in vivo. Int J Pharm. 1998;162:59–69. doi: 10.1016/S0378-5173(97)00413-4. [DOI] [Google Scholar]
  • 201.McCormack B, Gregoriadis G. Drugs-in-cyclodextrins-in liposomes: a novel concept in drug delivery. Int J Pharm. 1994;112:249–258. doi: 10.1016/0378-5173(94)90361-1. [DOI] [Google Scholar]
  • 202.Duchene D, Ponchel G, Wouessidjewe D. Cyclodextrins in targeting. Application to nanoparticles. Adv Drug Del Rev. 1999;36:29–40. doi: 10.1016/S0169-409X(98)00053-2. [DOI] [PubMed] [Google Scholar]
  • 203.McCormack B, Gregoriadis G. Comparative studies of the fate of free and liposome-entrapped hydroxypropyl-/3-cyclodextrin/drug complexes after intravenous injection into rats: implications in drug delivery. Biochim Biophys Acta. 1996;1291:237–244. doi: 10.1016/s0304-4165(96)00096-7. [DOI] [PubMed] [Google Scholar]
  • 204.Skalko N, Brandl M, Ladan MB, Grid JF, Genjak IJ. Liposomes with nifedipine and nifedipine-cyclodextrin complex: calorimetrical. Eur J Pharm Sci. 1996;4:359–366. doi: 10.1016/S0928-0987(96)00180-7. [DOI] [Google Scholar]
  • 205.Fatouros DG, Hatzidimitriu K, Antimisiaris SG. Liposomes encapsulating prednisolone- cyclodextrin complexes: comparision of membrane integrity and drug release. Eur J Pharm Sci. 2001;13:287–296. doi: 10.1016/S0928-0987(01)00114-2. [DOI] [PubMed] [Google Scholar]
  • 206.Skalko-Basnet N, Pavelic Z, Becirevic-Lacan M. Liposomes containing drug and cyclodextrin prepared by the one-step spray-drying method. Drug Dev Ind Pharm. 2000;26:1279–1284. doi: 10.1081/DDC-100102309. [DOI] [PubMed] [Google Scholar]
  • 207.Loukas YL, Jayasekera P, Gregoriadis G. Novel liposome-based multicomponent systems for the protection of photolabile agents. Int J Pharm. 1995;117:85–94. doi: 10.1016/0378-5173(94)00320-5. [DOI] [Google Scholar]
  • 208.Loukas YL, Vraka V, Gregoriadis G. Drugs, in cyclodextrins, in liposomes: a novel approach to the chemical stability of drugs sensitive to hydrolysis. Int J Pharm. 1998;162:137–142. doi: 10.1016/S0378-5173(97)00421-3. [DOI] [Google Scholar]
  • 209.Sukegawa T, Furuike T, Niikura K, Yamagishi A, Monde K, Nishimura S. Erythrocyte-like liposomes prepared by means of amphiphilic cyclodextrin sulfates. Chem Commun. 2002;5:430–431. doi: 10.1039/b110673b. [DOI] [PubMed] [Google Scholar]
  • 210.Filipovic-Grcic J, Laan MB, Skalko N, Jalsenjak I. Chitosan microspheres of nifedipine and nifedipine-cyclodextrin inclusion complexes. Int J Pharm. 1996;135:183–190. doi: 10.1016/0378-5173(96)04470-5. [DOI] [Google Scholar]
  • 211.Filipovic-Grcic J, Voinovich D, Moneghini M, Becirevic-Lacan M, Magarotto L, Jalsenjak I. Chitosan microspheres with hydrocortisone and hydrocortisone-hydroxypropyl-b-cyclodextrin inclusion complex. Eur J Pharm Sci. 2000;9:373–379. doi: 10.1016/S0928-0987(99)00078-0. [DOI] [PubMed] [Google Scholar]
  • 212.Bibby DC, Davies NM, Tucker IG. Investigations into the structure and composition of beta-cyclodextrin/poly (acrylic acid) microspheres. Int J Pharm. 1999;180:161–168. doi: 10.1016/S0378-5173(99)00004-6. [DOI] [PubMed] [Google Scholar]
  • 213.Bibby DC, Davies NM, Tucker IG. Poly (acrylic acid) microspheres containing β-cyclodextrin: loading and in vitro release of two dyes. Int J Pharm. 1999;187:243–250. doi: 10.1016/S0378-5173(99)00190-8. [DOI] [PubMed] [Google Scholar]
  • 214.Kang F, Jiang G, Hinderliter A, Luca PPD, Singh J. Lysozyme stability in primary emulsion for PLGA microsphere preparation: effect of recovery methods and stabilizing excipients. Pharm Res. 2002;19:629–633. doi: 10.1023/A:1015354028908. [DOI] [PubMed] [Google Scholar]
  • 215.Kang F, Singh J. Conformational stability of a model protein (bovine serum albumin) during primary emulsification process of PLGA microspheres synthesis. Int J Pharm. 2003;260:149–156. doi: 10.1016/S0378-5173(03)00263-1. [DOI] [PubMed] [Google Scholar]
  • 216.Quaglia F, De Rosa G, Granata E, Ungaro F, Fattal E, La Rotonda MI. Feeding liquid, non-ionic surfactant and cyclodextrin affect the properties of insulin-loaded poly(lactide-co-glycolide) microspheres prepared by spray-drying. J Control Release. 2003;86:267–278. doi: 10.1016/S0168-3659(02)00414-5. [DOI] [PubMed] [Google Scholar]
  • 217.Fundueanu G, Constantin M, Dalpiaz A, et al. Preparation and characterization of starch/cyclodextrin bioadhesive microspheres as platform for nasal administration of Gabexate Mesylate (Foy®) in allergic rhinitis treatment. Biomaterials. 2004;25:159–170. doi: 10.1016/S0142-9612(03)00477-0. [DOI] [PubMed] [Google Scholar]
  • 218.Constantin M, Fundueanu G, Bortolotti F, Cortesi R, Ascenzi P, Menegatti E. Preparation and characterisation of poly(vinyl alcohol)/ cyclodextrin microspheres as matrix for inclusion and separation of drugs. Int J Pharm. 2004;285:87–96. doi: 10.1016/j.ijpharm.2004.07.025. [DOI] [PubMed] [Google Scholar]
  • 219.Pariot N, Levy FE, Andry MC, Levy MC. Cross-linked beta-cyclodextrin microcapsules. II. Retarding effect on drug release through semi-permeable membranes. Int J Pharm. 2002;232:175–181. doi: 10.1016/S0378-5173(01)00899-7. [DOI] [PubMed] [Google Scholar]
  • 220.Memisoglu E, Bochot A, Sen M, Duchene D, Hincal AA. Non-surfactant nanospheres of progesterone inclusion complexes with amphiphilic β-cyclodextrins. Int J Pharm. 2003;251:143–153. doi: 10.1016/S0378-5173(02)00593-8. [DOI] [PubMed] [Google Scholar]
  • 221.Monza da Silveira A, Ponchel G, Puisieux F, Duchene D. Combined poly (isobutylcyanoacrylate) and cyclodextrins nanoparticles for enhancing the encapsulation of lipophilic drugs. Pharm Res. 1998;15:1051–1055. doi: 10.1023/A:1011982211632. [DOI] [PubMed] [Google Scholar]
  • 222.Duchene D, Ponchel G, Wouessidjewe D. Cyclodextrins in targeting Application to nanoparticles. Adv Drug Deliv Rev. 1999;36:29–40. doi: 10.1016/S0169-409X(98)00053-2. [DOI] [PubMed] [Google Scholar]
  • 223.Boudad H, Legrand P, Lebas G, Cheron M, Duchene D, Ponchel G. Combined hydroxypropyl-beta-cyclodextrin and poly (alkylcyanoacrylate) nanoparticles intended for oral administration of saquinavir. Int J Pharm. 2001;218:113–124. doi: 10.1016/S0378-5173(01)00622-6. [DOI] [PubMed] [Google Scholar]
  • 224.Radwan MA. Preparation and in vivo evaluation of parenteral metoclopramide-loaded poly (alkylcyanoacrylate) nanospheres in rats. J Microencapsul. 2001;18:467–477. doi: 10.1080/02652040010018146. [DOI] [PubMed] [Google Scholar]
  • 225.Cavalli R, Peira E, Caputo O, Gasco MR. Solid lipid nanoparticles as carriers of hydrocortisone and progesterone complexes with betacyclodextrins. Int J Pharm. 1999;182:59–69. doi: 10.1016/S0378-5173(99)00066-6. [DOI] [PubMed] [Google Scholar]
  • 226.Memisoglu E, Bochot A, Sen M, Charon D, Duchene D, Hincal AA. Amphiphilic beta-cyclodextrins modified on the primary face: synthesis, characterization, and evaluation of their potential as novel excipients in the preparation of nanocapsules. J Pharm Sci. 2002;91:1214–1224. doi: 10.1002/jps.10105. [DOI] [PubMed] [Google Scholar]
  • 227.Memisoglu E, Bochot A, Ozalp M, Sen M, Duchene D, Hincal AA. Direct formation of nanospheres from amphiphilic beta-cyclodextrin inclusion complexes. Pharm Res. 2003;20:117–125. doi: 10.1023/A:1022263111961. [DOI] [PubMed] [Google Scholar]
  • 228.Gèze A, Aous S, Baussanne I, Putaux JL, Defaye J, Wouessidjewe D. Influence of chemical structure of amphiphilic β-cyclodextrins on their ability to form stable nanoparticles. Int J Pharm. 2002;242:301–305. doi: 10.1016/S0378-5173(02)00192-8. [DOI] [PubMed] [Google Scholar]
  • 229.Shangraw RF, Pande GS, Gala P. Charactarisation of the tableting properties of beta cyclodextrin: the effects of processing variableson the inclusion complex formation, compactability and dissolution. Drug Dev Ind Pharm. 1992;18:1831–1851. doi: 10.3109/03639049209046334. [DOI] [Google Scholar]
  • 230.Suihko E, Korhoneno O, Jarvinen T, et al. Complexation with tolbutamide modifies, the physicochemical and tableting properties of hydroxypropyl-beta-cyclodextrin. Int J Pharm. 2001;215:137–145. doi: 10.1016/S0378-5173(00)00682-7. [DOI] [PubMed] [Google Scholar]
  • 231.Tsai T, Wu JS, Ho HO, Sheu MT. Modification of physical characteristics of microcrystalline cellulose by codrying with beta-cyclodextrins. J Pharm Sci. 1998;87:117–122. doi: 10.1021/js960486a. [DOI] [PubMed] [Google Scholar]
  • 232.Li WD, Huang JC, Corke H. Effect of beta-cyclodextrin on pasting properties of wheat starch. Nahrung. 2000;44:164–167. doi: 10.1002/1521-3803(20000501)44:3<164::AID-FOOD164>3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]
  • 233.Wu J, Ho H, Sheu M. Influence of wet granuation and lubrication on the powder and tableting properties of codried product of microcrystalline cellulose with beta-cyclodextrin. Eur J Pharm Biopharm. 2001;51:63–69. doi: 10.1016/S0939-6411(00)00137-5. [DOI] [PubMed] [Google Scholar]
  • 234.Gazzaniga A, Sangalli ME, Bruni G, Zema L, Vecchio C, Giordano F. The use of beta-cyclodextrin as a pelletization agent in the extrusion/ spheronization process. Drug Dev Ind Pharm. 1998;24:869–873. doi: 10.3109/03639049809088533. [DOI] [PubMed] [Google Scholar]
  • 235.Branchu S, Forbes RT, York P, Petren S, Nyquest H, Camber O. Hydroxypropyl-beta-cyclodextrin inhibits spray-drying-induced inactivation of beta-galactosidase. J Pharm Sci. 1999;88:905–911. doi: 10.1021/js9804819. [DOI] [PubMed] [Google Scholar]
  • 236.Tokihiro K, Irie T, Uekama K. Varying effects of cyclodextrin derivatives on aggregation and thermal behavior of insulin in aqueous solution. Chem Pharm Bull (Tokyo) 1997;45:525–531. doi: 10.1248/cpb.45.525. [DOI] [PubMed] [Google Scholar]
  • 237.Kitamura S, Fujimura T, Kohda S. Interaction between surface-active drug (FK906, rennin inhibitor) and cyclodextrins in aqueous solution. J Pharm Sci. 1999;88:327–330. doi: 10.1021/js980278d. [DOI] [PubMed] [Google Scholar]
  • 238.Blanco-Fuente H, Esteban-Fernandez B, Blanco-Mendez J, Otero-Espinar FJ. Use of beta-cyclodextrins to prevent modifications of the properties of carbopol hydrogels due to carbopol-drug interactions. Chem Pharm Bull (Tokyo). 2002;50:40–46. doi: 10.1248/cpb.50.40. [DOI] [PubMed] [Google Scholar]
  • 239.Muñoz-Ruiz AM, Paronen P. Particle and powder properties of cyclodextrins. Int J Pharm. 1997;148:33–39. doi: 10.1016/S0378-5173(96)04820-X. [DOI] [Google Scholar]
  • 240.Zannou EA, Streng WH, Stella VJ. Osmotic properties of sulfo-butylether and hydroxypropyl cyclodextrins. Pharm Res. 2001;18:1226–1231. doi: 10.1023/A:1010947631380. [DOI] [PubMed] [Google Scholar]
  • 241.Proniuk S, Blanchard J. Influence of degree of substitution of cyclodextrins on their colligative properties in solution. J Pharm Sci. 2001;90:1086–1090. doi: 10.1002/jps.1062. [DOI] [PubMed] [Google Scholar]
  • 242.Loftsson T, Stefansdottir O, Friariksdottir H, Guomundsson O. Interaction between preservatives and 2-hydroxypropyl β-cyclodextrin. Drug Dev Ind Pharm. 1992;18:1477–1484. doi: 10.3109/03639049209040853. [DOI] [Google Scholar]

Articles from AAPS PharmSciTech are provided here courtesy of American Association of Pharmaceutical Scientists

RESOURCES