Skip to main content
AAPS PharmSciTech logoLink to AAPS PharmSciTech
. 2007 Jul 13;8(3):E28–E33. doi: 10.1208/pt0803055

Transbuccal delivery of 5-Aza-2′-deoxycytidine: Effects of drug concentration, buffer solution, and bile salts on permeation

Ravichandran Mahalingam 1,, Harish Ravivarapu 2, Sanjeev Redkar 2, Xiaoling Li 1, Bhaskara R Jasti 1,
PMCID: PMC2750551  PMID: 17915805

Abstract

Delivery of 5-aza-2′-deoxycytidine (decitabine) across porcine buccal mucosa was evaluated as an alternative to the complex intravenous infusion regimen currently used to administer the drug. A reproducible high-performance liquid chromatography method was developed and optimized for the quantitative determination of this drug. Decitabine showed a concentration-dependent passive diffusion process across porcine buccal mucosa. An increase in the ionic strength of the phosphate buffer from 100 to 400 mM decreased the flux from 3.57±0.65 to 1.89±0.61 μg/h/cm2. Trihydroxy bile salts significantly enhanced the flux of decitabine at a 100 mM concentration (P>.05). The steady-state flux of decitabine in the presence of 100 mM of sodium taurocholate and sodium glycocholate was 52.65±9.48 and 85.22±7.61 μg/cm2/h, respectively. Two dihydroxy bile salts, sodium deoxytaurocholate and sodium deoxyglycocholate, showed better enhancement effect than did trihydroxy bile salts. A 38-fold enhancement in flux was achieved with 10 mM of sodium deoxyglycocholate.

Keywords: Decitabine, transmucosal, buccal, ionic strength, bile salts

Full Text

The Full Text of this article is available as a PDF (171.3 KB).

References

  • 1.Jones PA, Taylor SM. Cellular differentiation, cytidine analogs and DNA methylation. Cell. 1980;20:85–93. doi: 10.1016/0092-8674(80)90237-8. [DOI] [PubMed] [Google Scholar]
  • 2.Bouchard J, Momparler RL. Incorporation of 5-aza-2′-deoxycytidine-5′-triphosphate into DNA. Interactions with mammalian DNA polymerase alpha and DNA methylase. Mol Pharmacol. 1983;24:109–114. [PubMed] [Google Scholar]
  • 3.Pinto A, Attadia V, Fusco A, Ferrara F, Spada OA, Di Fiore PP. 5-Aza-2′-deoxycytidine induces terminal differentiation of leukemic blasts from patients with acute myeloid leukemias. Blood. 1984;64:922–929. [PubMed] [Google Scholar]
  • 4.Rivard GE, Momparler RL, Demers J. Phase 1 study on 5-aza-2′-deoxycytidine in children with acute leukemia. Leuk Res. 1981;5:453–462. doi: 10.1016/0145-2126(81)90116-8. [DOI] [PubMed] [Google Scholar]
  • 5.Momparler RL, Rivard GE, Gyger M. Clinical trial on 5-aza-2′-deoxycytidine in patients with acute leukemia. Pharmacol Ther. 1985;30:277–286. doi: 10.1016/0163-7258(85)90052-X. [DOI] [PubMed] [Google Scholar]
  • 6.Richel DJ, Colly LP, Kluin-Nelemans JC, Willemze R. The antileukaemic activity of 5-aza-2 deoxycytidine (Aza-dC) in patients with relapsed and resistant leukaemia. Br J Cancer. 1991;64:144–148. doi: 10.1038/bjc.1991.258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Kantarjian HM, O'Brien SM, Estey E, et al. Decitabine studies in chronic and acute myelogenous leukemia. Leukemia. 1997;11:S35–S36. doi: 10.1038/sj.leu.2400796. [DOI] [PubMed] [Google Scholar]
  • 8.Daskalakis M, Nguyen TT, Nguyen C, et al. Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-aza-2′-deoxycytidine (decitabine) treatment. Blood. 2002;100:2957–2964. doi: 10.1182/blood.V100.8.2957. [DOI] [PubMed] [Google Scholar]
  • 9.Zagonel V, Lo Re G, Marotta G, et al. 5-Aza-2′-deoxycytidine (decitabine) induces trilineage response in unfavourable myelodysplastic syndromes. Leukemia. 1993;7:30–35. [PubMed] [Google Scholar]
  • 10.Koshy M, Dorn L, Bressler L, et al. 2-deoxy 5-azacytidine and fetal hemoglobin induction in sickle cell anemia. Blood. 2000;96:2379–2384. [PubMed] [Google Scholar]
  • 11.Cunha KS, Reguly ML, Graf U, de Andrade HH. Somatic recombination: a major genotoxic effect of two pyrimidine antimetabolitic chemotherapeutic drugs in Drosophila melanogaster. Mutat Res. 2002;514:95–103. doi: 10.1016/s1383-5718(01)00326-6. [DOI] [PubMed] [Google Scholar]
  • 12.Momparler LF. 5-Aza-2-deoxycytidine: an overview. In: Momparler RL, De Vos D, editors. Proceedings of the Workshop on 5-Aza-2-Deoxycytidine. New York, NY: PCH Publication; 1990. pp. 9–15. [Google Scholar]
  • 13.Pinto A, Zagonel V. 5-Aza-2′-deoxycytidine (decitabine) and 5-azacytidine in the treatment of acute myeloid leukemias and myelodysplastic syndromes: past, present and future trends. Leukemia. 1993;7:51–60. [PubMed] [Google Scholar]
  • 14.Richel DL, Colly LP, Lurvink E, Willemze R. Comparison of the antileukemic activity of 5-aza-2-deoxycytidine (5-aza-dC) and 1-d-arabinofuranosylcytosine in rats with araC resistant and sensitive myelocytic leukemia. In: Momparler RL, De Vos D, editors. Proceedings of the Workshop on 5-Aza-2-Deoxycytidine. New York, NY: PCH Publication; 1990. pp. 77–87. [Google Scholar]
  • 15.Haas PS, Wijermans P, Verhoef G, Lubbert M. Treatment of myelodysplastic syndrome with a DNA methyltransferase inhibitor: lack of evidence for induction of chromosomal instability. Leuk Res. 2006;30:338–342. doi: 10.1016/j.leukres.2005.07.014. [DOI] [PubMed] [Google Scholar]
  • 16.Wijermans PW, Krulder JW, Huijgens PC, Neve P. Continuous infusion of low-dose 5-aza-2′-deoxycytidine in elderly patients with high-risk myelodysplastic syndrome. Leukemia. 1997;11:S19–S23. doi: 10.1038/sj.leu.2400526. [DOI] [PubMed] [Google Scholar]
  • 17.Wijermans P, Lubbert M, Verhoef G, et al. Low-dose 5-aza-2′-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: a multicenter phase II study in elderly patients. J Clin Oncol. 2000;18:956–962. doi: 10.1200/JCO.2000.18.5.956. [DOI] [PubMed] [Google Scholar]
  • 18.Ben-Kasus T, Ben-Zvi Z, Marquez VE, Kelley J, Agbaria R. Metabolic activation of zebularine, a novel DNA methylation inhibitor, in human bladder carcinoma cells. Biochem Pharmacol. 2005;70:121–133. doi: 10.1016/j.bcp.2005.04.010. [DOI] [PubMed] [Google Scholar]
  • 19.Zhao M, Rudek MA, He P, et al. Quantification of 5-azacytidine in plasma by electrospray tandem mass spectrometry coupled with high-performance liquid chromatography. J. Chromatogr B Analyt Technol Biomed Life Sci. 2004;813:81–88. doi: 10.1016/j.jchromb.2004.09.012. [DOI] [PubMed] [Google Scholar]
  • 20.Harris D, Robinson JR. Drug delivery via the mucous membranes of the oral cavity. J Pharm Sci. 1992;81:1–10. doi: 10.1002/jps.2600810102. [DOI] [PubMed] [Google Scholar]
  • 21.Wertz PW, Squier CA. Cellular and molecular basis of barrier function in oral epithelium. Crit Rev Ther Drug Carrier Syst. 1991;8:237–269. [PubMed] [Google Scholar]
  • 22.Sugawara M, Kurosawa M, Sakai K, Kobayashi M, Iseki K, Miyazaki K. Ionic strength has a greater effect than does transmembrane electric potential difference on permeation of tryptamine and indoleacetic acid across Caco-2 cells. Biochim Biophys Acta. 2002;1564:149–155. doi: 10.1016/S0005-2736(02)00442-X. [DOI] [PubMed] [Google Scholar]
  • 23.Hoogstraate AJ, Senel S, Cullander C, Verhoef J, Junginger HE, Bodde HE. Effects of bile salts on transport rates and routes of FTIC-labelled compounds across porcine buccal epithelium in vitro. J Control Release. 2007;40:211–221. doi: 10.1016/0168-3659(95)00187-5. [DOI] [Google Scholar]
  • 24.Gandhi R, Robinson JR. Mechanisms of penetration enhancement for transbuccal delivery of salicylic acid. Int J Pharm. 1992;85:129–140. doi: 10.1016/0378-5173(92)90142-O. [DOI] [Google Scholar]
  • 25.Veuillez F, Kalia YN, Jacques Y, Deshusses J, Buri P. Factors and strategies for improving buccal absorption of peptides. Eur J Pharm Biopharm. 2001;51:93–109. doi: 10.1016/S0939-6411(00)00144-2. [DOI] [PubMed] [Google Scholar]
  • 26.Samrat M, Uday M. Chemistry and biology of bile acids. Curr Sci. 2004;87:1666–1683. [Google Scholar]
  • 27.Nielsen HM, Rassing MR. TR 146 cells grown on filters as a model of human buccal epithelium, III: permeability enhancement by different pH values, different osmolality values, and bile salts. Int J Pharm. 1999;185:215–225. doi: 10.1016/S0378-5173(99)00165-9. [DOI] [PubMed] [Google Scholar]
  • 28.Xiang J, Fang X, Li X. Transbuccal delivery of 2′, 3′-dideoxycytidine: in vitro permeation study and histological investigation. Int J Pharm. 2002;231:57–66. doi: 10.1016/S0378-5173(01)00865-1. [DOI] [PubMed] [Google Scholar]
  • 29.Hoogstraate AJ, Coos Verhoef J, Pijpers A, et al. In vivo buccal delivery of the peptide drug buserelin with glycodeoxycholate as an absorption enhancer in pigs. Pharm Res. 2007;13:1233–1237. doi: 10.1023/A:1016024606221. [DOI] [PubMed] [Google Scholar]
  • 30.Hoogstraate AJ, Verhoef JC, Tuk B, et al. In-vivo buccal delivery of fluorescein isothiocyanate-dextran-4400 with glycodeoxycholate as an absorption enhancer in pigs. J Pharm Sci. 2007;85:457–460. doi: 10.1021/js950129k. [DOI] [PubMed] [Google Scholar]
  • 31.Senel S, Capan Y, Sargon MF. Enhancement of transbuccal permeation of morphine sulfate by sodium glycodeoxycholate in vitro. J Control Release. 1997;45:153–162. doi: 10.1016/S0168-3659(96)01568-4. [DOI] [Google Scholar]
  • 32.Senel S, Hoogstraate A, Spies F, Verhoef J, Bodde H. Enhancement of in vitro permeability of porcine buccal mucosa by bile salts: kinetic and histological studies. J Control Release. 1994;32:45–56. doi: 10.1016/0168-3659(94)90224-0. [DOI] [Google Scholar]
  • 33.Deneer VH, Drese GB, Roemele PE, et al. Buccal transport of flecainide and sotalol: effect of a bile salt and ionization state. Int J Pharm. 2002;241:127–134. doi: 10.1016/S0378-5173(02)00229-6. [DOI] [PubMed] [Google Scholar]
  • 34.Jasti BR, Zhou S, Mehta RC, Li X. Permeability of antisense oligonucleotide through porcine buccal mucosa. Int J Pharm. 2000;208:35–39. doi: 10.1016/S0378-5173(00)00543-3. [DOI] [PubMed] [Google Scholar]

Articles from AAPS PharmSciTech are provided here courtesy of American Association of Pharmaceutical Scientists

RESOURCES