Abstract
The purpose of this research was to explore the utility of β cyclodextrin (βCD) and β cyclodextrin derivatives (hydroxypropyl-β-cyclodextrin [HPβCD], sulfobutylether-β-CD [SB\CD], and a randomly methylated-β-CD [RMβCD]) to form inclusion complexes with the antitumoral drug, β-lapachone (βLAP), in order to overcome the problem of its poor water solubility. RMβCD presented the highest efficiency for βLAP solubilization and was selected to develop solid-state binary systems. Differential scanning calorimetry (DSC), X-ray powder diffractometry (XRPD), Fourier transform infrared (FTIR) and optical and scanning electron microscopy results suggest the formation of inclusion complexes by both freeze-drying and kneading techniques with a dramatic improvement in drug dissolution efficiency at 20-minute dissolution efficiency (DE20-minute 67.15% and 88.22%, respectively) against the drug (DE20-minute 27.11%) or the βCD/drug physical mixture (DE20-minute 27.22%). However, the kneading method gives a highly crystalline material that together with the adequate drug dissolution profile make it the best procedure in obtaining inclusion complexes of RMβCD/βLAP convenient for different applications of βLAP.
Keywords: β-lapachone, antitumoral, cyclodextrin, inclusion complex, crystallinity, dissolution rate
Full Text
The Full Text of this article is available as a PDF (497.1 KB).
References
- 1.Burnett AR, Thomson RH. Naturally occurring quinones. XII. Extractives fromTabebuia chrysantha and other Bignoniaceae.J Chem Soc C. 1968;***;850–853.
- 2.Hooker SC, Shepard HW, Walsh JG, Connitt GH. Constitution of lapachol and its derivatives. J Am Chem Soc. 1936;58:1190–1197. doi: 10.1021/ja01298a033. [DOI] [Google Scholar]
- 3.Guiraud P, Steiman R, Campos-Takaki G, Seigle-Murandi F, Simeon de Buochberg M. Comparison of antibacterial and antifungal activities of lapachol and b-lapachone. Planta Med. 1994;60:373–374. doi: 10.1055/s-2006-959504. [DOI] [PubMed] [Google Scholar]
- 4.Li CJ, Zhang LJ, Dezube BJ, Crumpacker CS, Pardee AB. Three inhibitors of type 1 human immunodeficiency virus long terminal repeat-directed gene expression and virus replication. Proc Natl Acad Sci USA. 1993;90:1839–1842. doi: 10.1073/pnas.90.5.1839. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Pereira EM, Machado T de B, Leal IC, et al. Tabebuia avellanedae naphthoquinones: Activity against methicillin-resistant staphylococcal strains, cytotoxic activity and in vivo dermal irritability analysis. Ann Clin Microbiol Antimicrob. 2006;5:5–5. doi: 10.1186/1476-0711-5-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Muller K, Sellmer A, Weigrebe W. Potential antipsoriatic agents: Lapacho compounds as potent inhibitors of HaCaT cell growth. J Nat Prod. 1999;62:1134–1136. doi: 10.1021/np990139r. [DOI] [PubMed] [Google Scholar]
- 7.Tudan C, Jackson JK, Higo TT, Burt HM. The effect of inhibiting topoisomerase I and II on the anti-apoptotic response associated with pro-inflammatory crystals of calcium pyrophosphate dihydrate in human neutrophils. Inflamm Res. 2003;52:8–17. doi: 10.1007/s000110300008. [DOI] [PubMed] [Google Scholar]
- 8.Pinto CN, Dantas AP, De Moura KCG, et al. Chemical reactivity studies with naphthoquinones from tabebuia with anti-trypanosoma efficacy. Arzneimittelforschung. 2000;50:1120–1128. doi: 10.1055/s-0031-1300337. [DOI] [PubMed] [Google Scholar]
- 9.Planchon SM, Wuerzberger S, Frydman B, et al. Beta-lapachone-mediated apoptosis in human promyelocytic leukemia (HL-60) and human prostate cancer cells: A p53-independent response. Cancer Res. 1995;55:3706–3711. [PMC free article] [PubMed] [Google Scholar]
- 10.Li Y, Sun X, LaMont JT, Pardee AB, Li CJ. Selective killing of cancer cells by b-lapachone: Direct checkpoint activation as a strategy against cancer. Proc Natl Acad Sci USA. 2003;100:2674–2678. doi: 10.1073/pnas.0538044100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Ough M, Lewis A, Bey EA, et al. Efficacy of beta-lapachone in pancreatic cancer treatment: exploiting the novel, therapeutic target NQO1. Cancer Biol Ther. 2005;4:95–102. doi: 10.4161/cbt.4.1.1382. [DOI] [PubMed] [Google Scholar]
- 12.Suzuki M, Amano M, Choi J, et al. Synergistic effects of radiation and beta-lapachone in DU-145 human prostate cancer cells in vitro. Radiat Res. 2006;165:525–531. doi: 10.1667/RR3554.1. [DOI] [PubMed] [Google Scholar]
- 13.Jiang Z, Reddy DG, inventors. Pharmaceutical compositions containing b-lapachone or derivatives or analogs. PCT Designated States: Designated States W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS. JP, KE, KG, KP, KR, KZ, LC, LK, LS, LT, US patent 7074824, February 13, 2003.
- 14.Rajewski RA, Stella VJ. Pharmaceutical applications of cyclodextrins. 2. In vivo drug delivery. J Pharm Sci. 2007;85:1142–1169. doi: 10.1021/js960075u. [DOI] [PubMed] [Google Scholar]
- 15.Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J Pharm Sci. 2007;85:1017–1025. doi: 10.1021/js950534b. [DOI] [PubMed] [Google Scholar]
- 16.Nasongkla N, Wiedmann AF, Bruening A, et al. Enhancement of solubility and bioavailability of beta-lapachone using cyclodextrin inclusion complexes. Pharm Res. 2003;20:1626–1633. doi: 10.1023/A:1026143519395. [DOI] [PubMed] [Google Scholar]
- 17.Wang F, Blanco E, Ai H, Boothman DA, Gao J. Modulating beta-lapachone release from polymer millirods through cyclodextrin complexation. J. Pharm Sci. 2006;95:2309–2319. doi: 10.1002/jps.20721. [DOI] [PubMed] [Google Scholar]
- 18.Cao F, Guo J, Ping Q. The physicochemical characteristics of freeze-dried scutellarin-cyclodextrin tetracomponent complexes. Drug Dev Ind Pharm. 2005;31:747–756. doi: 10.1080/03639040500216220. [DOI] [PubMed] [Google Scholar]
- 19.Davis ME, Brewster ME. Cyclodextrin-based pharmaceutics: Past, present and future. Nat Rev Drug Discov. 2004;3:1023–1035. doi: 10.1038/nrd1576. [DOI] [PubMed] [Google Scholar]
- 20.Soares da Cunha Filho MS, Alves FC, Alves GMC, Monteiro DB, Morais de Medeiros FP, Rolim Neto PJ. Beta-lapachone: Development and validation of analytical method for the new therapeutic antineoplastic alternative. Rev Farm. 2005;86:39–43. [Google Scholar]
- 21.Higuchi T, Connors KA. Phase solubility techniques. Adv. Anal Chem. 1965;4:117–212. [Google Scholar]
- 22.Hedges AR. Industrial applications of cyclodextrins. Chem Rev. 1998;98:2035–2044. doi: 10.1021/cr970014w. [DOI] [PubMed] [Google Scholar]
- 23.Balzar D, Audebrand N, Daymond MR, et al. Size-strain line-broadening analysis of the ceria round-robin sample. Appl Cryst. 2004;37:911–924. doi: 10.1107/S0021889804022551. [DOI] [Google Scholar]
- 24.Warren BE, Averbach BL. The effect of cold work in metals on powder pattern intensities. J Appl Phys. 1949;20:1066–1069. doi: 10.1063/1.1698243. [DOI] [Google Scholar]
- 25.Roisnel T, Rodriguez-Carvajal J. WinPLOTR: A Windows tool for powder diffraction patterns analysis Materials Science; Stafa-Zurich, Switzerland: Trans Tech Publications; 2000. pp. 118–123. [Google Scholar]
- 26.Cline JP, Deslattes RD, Staudenmann JL. Certificate SRM 660a. Gaithersburg, MD: NIST; 2000. [Google Scholar]
- 27.Veiga MD, Diaz PJ, Ahsan F. Interactions of griseofulvin with cyclodextrins in solid binary systems. J. Pharm Sci. 1998;87:891–900. doi: 10.1021/js970233x. [DOI] [PubMed] [Google Scholar]
- 28.US Department of Health and Human Services. Guidance for Industry: Dissolution Testing of Immediate Release Solid Oral Dosage Forms, August 1997. Available at: http://www.fda.gov/eder/guidance/1713bp1.pdf. Accessed January 23, 2007.
- 29.Khan KA, Rhodes CT. Effect of compaction pressure on the dissolution efficiency of some direct compression systems. Pharm Acta Helv. 1972;47:594–607. [PubMed] [Google Scholar]
- 30.Fernández-Palacín F, López Sánchez MA, Muñoz Márquez MA, Rodríguez-Chía M, Sánchez-Navas A, Valero-Franco C. Estadistica Asistida por Ordenador. Statgraphics Plus 4.1. Cádiz: Universidad de Cádiz; 2000. [Google Scholar]
- 31.Mura P, Furlanetto S, Cirri M, Maestrelli F, Corti G, Pinzauti S. Interaction of naproxen with ionic cyclodextrins in aqueous solution and in the solid state. J Pharm Biomed Anal. 2005;37:987–994. doi: 10.1016/j.jpba.2004.06.016. [DOI] [PubMed] [Google Scholar]
- 32.Jacquet R, Elfakir C, Lafosse M. Characterization of a new methylated beta-cyclodextrin with a low degree of substitution by electrospray ionization mass spectrometry and liquid chromatography/mass spectrometry. Rapid Commun Mass Spectrom. 2005;19:3097–3102. doi: 10.1002/rcm.2175. [DOI] [PubMed] [Google Scholar]
- 33.Cunha-Filho MS, Landin M, Martinez-Pacheco R, Dacunha-Marinho B. Beta-lapachone. Acta Crystallogr C. 2006;62:0473–0475. doi: 10.1107/S0108270106021706. [DOI] [PubMed] [Google Scholar]
- 34.Frooming K, Szejtli J. Cyclodextrin in Pharmacy. London, UK: Kluwer Academic Publishers; 1994. [Google Scholar]
- 35.Cabral Marques HM, Hadgraft J, Kellaway IW. Studies of cyclodextrin inclusion complexes. I. The salbutamol-cyclodextrin complex as studied by phase solubility and DSC. Int J Pharm. 1990;63:259–266. doi: 10.1016/0378-5173(90)90132-N. [DOI] [Google Scholar]
- 36.Cirri M, Rangoni C, Maestrelli F, Corti G, Mura P. Development of fast-dissolving tablets of flurbiprofen-cyclodextrin complexes. Drug Dev Ind Pharm. 2005;31:697–707. doi: 10.1080/03639040500253694. [DOI] [PubMed] [Google Scholar]
- 37.Fernandes CM, Teresa Vieira M, Veiga FJB. Physicochemical characterization and in vitro dissolution behavior of nicardipine-cyclodextrins inclusion compounds. Eur J Pharm Sci. 2002;15:79–88. doi: 10.1016/S0928-0987(01)00208-1. [DOI] [PubMed] [Google Scholar]