Skip to main content
AAPS PharmSciTech logoLink to AAPS PharmSciTech
. 2007 Dec 21;8(4):258–266. doi: 10.1208/pt0804112

Characterization of coating systems

Linda A Felton 1,
PMCID: PMC2750698  PMID: 18181533

Abstract

Polymeric film coatings have been applied to solid substrates for decorative, protective, and functional purposes. Irrespective of the reasons for coating, certain properties of the polymer films may be determined as a method to evaluate coating formulations, substrate variables, and processing conditions. This article describes experimental techniques to assess various properties of both free and applied films, including water vapor and oxygen permeability, as well as thermal, mechanical, and adhesive characteristics. Methods to investigate interfacial interactions are also presented.

Keywords: Polymeric film, permeability, mechanical testing, adhesion, interface

Full Text

The Full Text of this article is available as a PDF (371.2 KB).

Footnotes

Themed Issue: Oral Controlled Release Development and Technology

Guest Editor — Stephen A. Howard and Jian-Xin Li

References

  • 1.Obara S, McGinity JW. Properties of free films prepared from aqueous polymers by a spraying technique. Pharm Res. 1994;11:1562–1567. doi: 10.1023/A:1018949502392. [DOI] [PubMed] [Google Scholar]
  • 2.Obara S, McGinity JW. Influence of processing variables on the properties of free films prepared from aqueous polymeric dispersions by a spray technique. Int J Pharm. 1995;126:1–10. doi: 10.1016/0378-5173(95)04057-9. [DOI] [Google Scholar]
  • 3.Baert L, Remon JP. Water vapour permeation of aqueous based ethylacrylate methylmethacrylate copolymer films. Int J Pharm. 1993;99:181–187. doi: 10.1016/0378-5173(93)90360-R. [DOI] [Google Scholar]
  • 4.Guo J-H. Effects of plasticizers on water permeation and mechanical properties of cellulose acetate: antiplasticization in slightly plasticized polymer film. Drug Dev Ind Pharm. 1993;19:1541–1555. doi: 10.3109/03639049309069325. [DOI] [Google Scholar]
  • 5.Okor RS. Casting solvent effects on the permeability of polymer films of differing quaternary ammonium (cation) content. J Pharm Pharmacol. 1987;39:547–548. doi: 10.1111/j.2042-7158.1987.tb03174.x. [DOI] [PubMed] [Google Scholar]
  • 6.Zheng W, Sauer D, McGinity JW. Influence of hydroxyethylcellulose on the drug release properties of theophylline pellets coated with Eudragit RS 30 D. Eur J Pharm Biopharm. 2005;59:147–154. doi: 10.1016/j.ejpb.2004.06.002. [DOI] [PubMed] [Google Scholar]
  • 7.Banker GS, Gore AY, Swarbrick J. Water vapour transmission properties of applied polymer films. J Pharm Pharmacol. 1966;18:205S–211S. doi: 10.1111/j.2042-7158.1966.tb07906.x. [DOI] [PubMed] [Google Scholar]
  • 8.Gulian FJ, Steffenino RM, Ferrizzi DM, Farrell TP. Oxidative protection of ibuprofen using Opadry fx special effects film coating system [abstract]AAPS PharmSci. 2004;2:abstract 5078.
  • 9.List PH, Kassis G. On the permeability of various tablet coatings to water vapour and oxygen. Acta Pharm Technol. 1982;28:21–33. [Google Scholar]
  • 10.Felton LA, Timmins GS. A nondestructive technique to determine the rate of oxygen permeation into solid dosage forms. Pharm Dev Technol. 2006;11:141–147. doi: 10.1080/10837450600561208. [DOI] [PubMed] [Google Scholar]
  • 11.Liu KJ, Gast P, Moussavi M, et al. Lithium phthalocyanine: a probe for electron paramagnetic resonance oximetry in viable biological systems. Proc Natl Acad Sci USA. 1993;90:5438–5442. doi: 10.1073/pnas.90.12.5438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Gruetzmann R, Wagner K. Quantification of the leaching of triethyl citrate/polysorbate 80 mixtures from Eudragit RS films by differential scanning calorimetry. Eur J Pharm Biopharm. 2005;60:159–162. doi: 10.1016/j.ejpb.2004.11.004. [DOI] [PubMed] [Google Scholar]
  • 13.Gupta VK, Beckert T, Deusch N, Hariharan M, Price JC. Investigation of potential ionic interactions between anionic and cationic polymethacrylates of multiple coatings of novel colonic delivery system. Drug Dev Ind Pharm. 2002;28:207–215. doi: 10.1081/DDC-120002454. [DOI] [PubMed] [Google Scholar]
  • 14.Nyamweya N, Hoag SW. Assessment of polymer-polymer interactions in blends of HPMC and film forming polymers by modulated temperature differential scanning calorimetry. Pharm Res. 2000;17:625–631. doi: 10.1023/A:1007585403781. [DOI] [PubMed] [Google Scholar]
  • 15.Nair R, Nyamweya N, Gonen S, Martinez-Miranda LJ, Hoag SW. Influence of various drugs on the glass transition temperature of poly (vinylpyrrolidone): a thermodynamic and spectroscopic investigation. Int J Pharm. 2001;225:83–96. doi: 10.1016/S0378-5173(01)00767-0. [DOI] [PubMed] [Google Scholar]
  • 16.Zhu Y, Shah NH, Malick AW, Infeld MH, McGinity JW. Solid-state plasticization of an acrylic polymer with chlorpheniramine maleate and triethyl citrate. Int J Pharm. 2002;241:301–310. doi: 10.1016/S0378-5173(02)00244-2. [DOI] [PubMed] [Google Scholar]
  • 17.Gutierrez-Rocca JC, McGinity JW. Influence of water soluble and insoluble plasticizers on the physical and mechanical properties of acrylic resin copolymers. Int J Pharm. 1994;103:293–301. doi: 10.1016/0378-5173(94)90180-5. [DOI] [Google Scholar]
  • 18.Yoshihashi Y, Yonemochi E, Terada K. Estimation of initial dissolution rate of drug substance by thermal analysis: application for carbamazepine hydrate. Pharm Dev Technol. 2002;7:89–95. doi: 10.1081/PDT-120002234. [DOI] [PubMed] [Google Scholar]
  • 19.Chidavaenzi OC, Buckton G, Koosha F, Pathak R. The use of thermal techniques to assess the impact of free concentration on the amorphous content and polymorphic forms present in spray dried lactose. Int J Pharm. 1997;159:67–74. doi: 10.1016/S0378-5173(97)00272-X. [DOI] [Google Scholar]
  • 20.Zheng W, McGinity JW. Influence of Eudragit NE 30 D blended with Eudragit L 30 D-55 on the release of phenylpropanolamine hydrochloride from coated pellets. Drug Dev Ind Pharm. 2003;29:357–366. doi: 10.1081/DDC-120018210. [DOI] [PubMed] [Google Scholar]
  • 21.Fearon PK, Marshall N, Billingham NC, Bigger SW. Evaluation of the oxidative stability of multiextruded polypropylene as assessed by physicomechanical testing and simultaneous differential scanning calorimetry-chemiluminescence. J Appl Polym Sci. 2001;79:733–741. doi: 10.1002/1097-4628(20010124)79:4<733::AID-APP180>3.0.CO;2-I. [DOI] [Google Scholar]
  • 22.Hoffmann F, Riesen R, Foreman J. Characterization of thermal stability and reaction products by means of TGA-FTIR coupling. Am Lab. 2000;32:13–17. [Google Scholar]
  • 23.Lippold BH, Sutter BK, Lippold BC. Parameters controlling drug release from pellets coated with aqueous ethyl cellulose dispersions. Int J Pharm. 1989;54:15–25. doi: 10.1016/0378-5173(89)90160-9. [DOI] [Google Scholar]
  • 24.Dashevsky A, Wagner K, Kolter K, Bodmeier R. Physicochemical and release properties of pellets coated with Kollicoat SR 30 D, a new aqueous polyvinyl acetate dispersion for extended release. Int J Pharm. 2005;290:15–23. doi: 10.1016/j.ijpharm.2004.10.024. [DOI] [PubMed] [Google Scholar]
  • 25.Rowe RC. Correlations between the in-situ performance of tablet film coating formulations based on hydroxypropyl methylcellulose and data obtained from tensile testing of free films. Pharm Technol. 1983;29:205–207. [Google Scholar]
  • 26.Satturwar PM, Fulzele SV, Panyam J, et al. Evaluation of new rosin derivatives for pharmaceutical coating. Int J Pharm. 2004;270:27–36. doi: 10.1016/j.ijpharm.2003.10.021. [DOI] [PubMed] [Google Scholar]
  • 27.Gibson SHM, Rowe RC, White EFT. The mechanical properties of pigmented tablet coating formulations and their resistance to cracking. II. Dynamic mechanical measurement. Int J Pharm. 1989;50:163–173. doi: 10.1016/0378-5173(89)90141-5. [DOI] [Google Scholar]
  • 28.Fulzele SV, Satturwar PM, Dorle AK. Polymerized rosin: novel film forming polymer for drug delivery. Int J Pharm. 2002;249:175–184. doi: 10.1016/S0378-5173(02)00529-X. [DOI] [PubMed] [Google Scholar]
  • 29.Gutierrez-Rocca JC, McGinity JW. Influence of aging on the physical-mechanical properties of acrylic resin films cast from aqueous dispersions and organic solutions. Drug Dev Ind Pharm. 1993;19:315–332. doi: 10.3109/03639049309038770. [DOI] [Google Scholar]
  • 30.Wu C, McGinity JW. Non-traditional plasticization of polymeric films. Int J Pharm. 1999;177:15–27. doi: 10.1016/S0378-5173(98)00312-3. [DOI] [PubMed] [Google Scholar]
  • 31.Felton LA, Shah NH, Zhang G, Infeld MH, Malick AW, McGinity JW. Compaction properties of individual non-pareil beads coated with an acrylic resin copolymer. STP Pharm Sci. 1997;7:457–462. [Google Scholar]
  • 32.Wu C, McGinity JW. Influence of relative humidity on the mechanical and drug release properties of theophylline pellets coated with an acrylic polymer containing methylparaben as a non-traditional plasticizer. Eur J Pharm Biopharm. 2000;50:277–284. doi: 10.1016/S0939-6411(99)00088-0. [DOI] [PubMed] [Google Scholar]
  • 33.Felton LA, Shah NH, Zhang G, Infeld MH, Malick AW, McGinity JW. Physical-mechanical properties of film-coated soft gelatin capsules. Int J Pharm. 1996;127:203–211. doi: 10.1016/0378-5173(95)04212-1. [DOI] [Google Scholar]
  • 34.Dashevsky A, Kolter K, Bodmeier R. Compression of pellets coated with various aqueous polymer dispersions. Int J Pharm. 2004;279:19–26. doi: 10.1016/j.ijpharm.2004.03.019. [DOI] [PubMed] [Google Scholar]
  • 35.Lopez-Rodriguez FJ, Torrado JJ, Torrado S, Escamilla C, Cadorniga R, Augsburger LL. Compression behavior of acetylsalicyclic acid pellets. Drug Dev Ind Pharm. 1993;19:1369–1377. doi: 10.3109/03639049309047180. [DOI] [Google Scholar]
  • 36.Bodmeier R. Tableting of coated pellets. Eur J Pharm Biopharm. 1997;43:1–8. doi: 10.1016/S0939-6411(96)00028-8. [DOI] [Google Scholar]
  • 37.Bodmeier R, Paeratakul O. Dry and wet strengths of polymeric films prepared from an aqueous colloidal polymer dispersion, Eudragit RS30D. Int J Pharm. 1993;96:129–138. doi: 10.1016/0378-5173(93)90220-A. [DOI] [Google Scholar]
  • 38.Lafferty SV, Newton JM, Podczeck F. Dynamic mechanical thermal analysis studies of polymer films prepared from aqueous dispersion. Int J Pharm. 2002;235:107–111. doi: 10.1016/S0378-5173(01)00973-5. [DOI] [PubMed] [Google Scholar]
  • 39.Felton LA, McGinity JW. Adhesion of polymeric films to pharmaceutical solids. Eur J Pharm Biopharm. 1999;47:1–14. doi: 10.1016/S0939-6411(98)00092-7. [DOI] [PubMed] [Google Scholar]
  • 40.Stanley P, Rowe RC, Newton JM. Theoretical considerations of the influence of polymer film coatings on the mechanical strength of tablets. J Pharm Pharmacol. 1981;33:557–560. doi: 10.1111/j.2042-7158.1981.tb13865.x. [DOI] [PubMed] [Google Scholar]
  • 41.Croll SG. The origin of residual internal stress in solvent-cast thermoplastic coatings. J Appl Polym Sci. 1979;23:847–858. doi: 10.1002/app.1979.070230319. [DOI] [Google Scholar]
  • 42.Sato K. The internal stress of coating films. Prog Org Coating. 1980;8:143–160. doi: 10.1016/0300-9440(80)80011-7. [DOI] [Google Scholar]
  • 43.Rowe RC. A reappraisal of the equations used to predict the internal stresses in film coatings applied to tablet substrates. J Pharm Pharmacol. 1983;35:112–113. doi: 10.1111/j.2042-7158.1983.tb04280.x. [DOI] [PubMed] [Google Scholar]
  • 44.Okutgen E, Hogan JE, Aulton ME. Quantitative estimation of internal stress development in aqueous HPMC tablet film coats. Int J Pharm. 1995;119:193–202. doi: 10.1016/0378-5173(94)00393-J. [DOI] [Google Scholar]
  • 45.Fisher DG, Rowe RC. The adhesion of film coatings to tablet surfaces—instrumentation and preliminary evaluation. J Pharm Pharmacol. 1976;28:886–889. doi: 10.1111/j.2042-7158.1976.tb04086.x. [DOI] [PubMed] [Google Scholar]
  • 46.Felton LA, McGinity JW. Influence of tablet hardness and hydrophobicity on the adhesive properties of an acrylic resin copolymer. Pharm Dev Technol. 1996;1:381–389. doi: 10.3109/10837459609031433. [DOI] [PubMed] [Google Scholar]
  • 47.Lehtola V-M, Heinamaki JT, Nikupaavo P, Yliruusi JK. Effect of some excipients and compression pressure on the adhesion of aqueous-based hydroxypropyl methylcellulose film coatings to tablet surface. Drug Dev Ind Pharm. 1995;21:1365–1375. doi: 10.3109/03639049509063025. [DOI] [Google Scholar]
  • 48.Nadkarni PD, Kildsig DO, Kramer PA, Banker GS. Effects of surface roughness and coating solvent on film adhesion to tablets. J Pharm Sci. 1975;64:1554–1557. doi: 10.1002/jps.2600640931. [DOI] [PubMed] [Google Scholar]
  • 49.Rowe RC. The measurement of the adhesion of film coatings to tablet surfaces: the effect of tablet porosity, surface roughness, and film thickness. J Pharm Pharmacol. 1978;30:343–346. doi: 10.1111/j.2042-7158.1978.tb13252.x. [DOI] [PubMed] [Google Scholar]
  • 50.Felton LA, McGinity JW. Influence of plasticizers on the adhesive properties of an acrylic resin copolymer to hydrophilic and hydrophobic tablet compacts. Int J Pharm. 1997;154:167–178. doi: 10.1016/S0378-5173(97)00133-6. [DOI] [Google Scholar]
  • 51.Felton LA, Austin-Forbes T, Moore TA. Influence of surfactants in aqueous-based polymeric dispersions on the thermo-mechanical and adhesive properties of acrylic films. Drug Dev Ind Pharm. 2000;26:205–210. doi: 10.1081/DDC-100100346. [DOI] [PubMed] [Google Scholar]
  • 52.Felton LA, McGinity JW. Influence of pigment concentration and particle size on adhesion of an acrylic resin copolymer to tablet compacts. Drug Dev Ind Pharm. 1999;25:597–606. doi: 10.1081/DDC-100102214. [DOI] [PubMed] [Google Scholar]
  • 53.Felton LA, Baca ML. Influence of curing on the adhesive and mechanical properties of an applied acrylic polymer. Pharm Dev Technol. 2001;6:53–59. doi: 10.1081/PDT-100000013. [DOI] [PubMed] [Google Scholar]
  • 54.Bond L, Allen S, Davies MC, et al. Differential scanning calorimetry and scanning thermal microscopy analysis of pharmaceutical materials. Int J Pharm. 2002;243:71–82. doi: 10.1016/S0378-5173(02)00239-9. [DOI] [PubMed] [Google Scholar]
  • 55.Price DM, Reading M, Hammiche A, Pollock HM. Microthermal analysis: scanning thermal microscopy and localized thermal analysis. Int J Pharm. 1999;192:85–96. doi: 10.1016/S0378-5173(99)00275-6. [DOI] [PubMed] [Google Scholar]
  • 56.Felton LA, Perry WL. A novel technique to quantify film-tablet interfacial thickness. Pharm Dev Technol. 2002;7:43–47. doi: 10.1081/PDT-120002229. [DOI] [PubMed] [Google Scholar]
  • 57.Missaghi S, Fassihi R. A novel approach in the assessment of polymeric film formation and film adhesion on different pharmaceutical solid substrates.AAPS PharmSciTech. 2004;5:E29. [DOI] [PMC free article] [PubMed]
  • 58.Buckton G, Bulpett R, Verma N. Surface analysis of pharmaceutical powders: x-ray photoelectron spectroscopy (XPS) related to powder wettability. Int J Pharm. 1991;72:157–162. doi: 10.1016/0378-5173(91)90054-R. [DOI] [Google Scholar]
  • 59.Burke GM, Wurster DE, Berg MJ, Veng-Pedersen P, Schottelius DD. Surface characterization of activated charcoal by x-ray photoelectron spectroscopy (XPS): correlation with phenobarbital absorption data. Pharm Res. 1992;9:126–130. doi: 10.1023/A:1018900431661. [DOI] [PubMed] [Google Scholar]
  • 60.Davies MC, Wilding IR, Short RD, Khan MA, Watts JF, Melia CD. An analysis of the surface chemical structure of polymethacrylate (Eudragit) film coating polymers by XPS. Int J Pharm. 1989;57:183–187. doi: 10.1016/0378-5173(89)90205-6. [DOI] [Google Scholar]
  • 61.Mouget Y, Gosselin P, Tourigny M, Bechard S. Three-dimensional analyses of tablet content and film coating uniformity by laser-induced breakdown spectroscopy (LIBS) Am Lab. 2003;2:20–22. [Google Scholar]
  • 62.Fitzgerald AJ, Cole BE, Taday PF. Nondestructive analysis of tablet coating thicknesses using terahertz pulsed imaging. J Pharm Sci. 2005;94:177–183. doi: 10.1002/jps.20225. [DOI] [PubMed] [Google Scholar]
  • 63.Hancock B, Mullarney MP. X-ray microtomography of solid dosage forms. Pharm Technol. 2005;29:92–100. [Google Scholar]

Articles from AAPS PharmSciTech are provided here courtesy of American Association of Pharmaceutical Scientists

RESOURCES