Skip to main content
The AAPS Journal logoLink to The AAPS Journal
. 2005 Dec 7;7(4):E820–E833. doi: 10.1208/aapsj070479

Ophthalmic drug design based on the metabolic activity of the eye: Soft drugs and chemical delivery systems

Nicholas Bodor 1,, Peter Buchwald 2
PMCID: PMC2750951  PMID: 16594634

Abstract

Despite its apparent easy accessibility, the eye is, in fact, well protected against the absorption of foreign materials, including therapeutic agents, by the eyelids, by the tearflow, and by the permeability barriers imposed by the cornea on one side and the blood-retinal barrier on the other. Most existing ophthalmic drugs were adapted from other therapeutic applications and were not specifically developed for the treatment of eye diseases; hence, they are not well suited to provide eye-specific effects without causing systemic side effects. A real breakthrough in the area of ophthalmic therapeutics can be achieved only by specifically designing new drugs for ophthalmic applications to incorporate the possibility of eye targeting into their chemical structure. Possibilities provided along these lines by designing chemical delivery systems (CDSs) and soft drugs within the framework of retrometabolic drug design are reviewed here. Both are general concept applicable in almost any therapeutic area. This review will concentrate on \-adrenergic agonists and anti-inflammatory corticosteroids, where clinical results obtained with new chemical entities, such as betaxoxime, adaprolol, loteprednol etabonate, and etiprednol dicloacetate, exist to support the advantages of such metabolism-focused, ophthalmic-specific drug design approaches.

Keywords: beta-blockers, corticosteroids, eye-targeted delivery, glaucoma, intraocular pressure, oxime

Full Text

The Full Text of this article is available as a PDF (867.7 KB).

References

  • 1.Stewart PA, Tuor UI. Blood-eye barriers in the rat: correlation of ultrastructure with function. J Comp Neurol. 1994;340:566–576. doi: 10.1002/cne.903400409. [DOI] [PubMed] [Google Scholar]
  • 2.Schoenwald RD. Ocular drug delivery: pharmacokinetic considerations. Clin Pharmacokinet. 1990;18:255–269. doi: 10.2165/00003088-199018040-00001. [DOI] [PubMed] [Google Scholar]
  • 3.Mitra AK, Mikkelson TJ. Mechanism of transcorneal permeation of pilocarpine. J Pharm Sci. 1988;77:771–775. doi: 10.1002/jps.2600770911. [DOI] [PubMed] [Google Scholar]
  • 4.Davies NM. Biopharmaceutical considerations in topical ocular drug delivery. Clin Exp Pharmacol Physiol. 2000;27:558–562. doi: 10.1046/j.1440-1681.2000.03288.x. [DOI] [PubMed] [Google Scholar]
  • 5.Grass GM, Robinson JR. Mechanism of corneal penetration. I. In vivo and in vitro kinetics. J Pharm Sci. 1988;77:3–14. doi: 10.1002/jps.2600770103. [DOI] [PubMed] [Google Scholar]
  • 6.Prausnitz MR, Noonan JS. Permeability of cornea, sclera, and conjuctiva: a literature analysis for drug delivery to the eye. J Pharm Sci. 1998;87:1479–1488. doi: 10.1021/js9802594. [DOI] [PubMed] [Google Scholar]
  • 7.Edwards A, Prausnitz MR. Predicted permeability of the cornea to topical drugs. Pharm Res. 2001;18:1497–1508. doi: 10.1023/A:1013061926851. [DOI] [PubMed] [Google Scholar]
  • 8.Lee VH, Robinson JR. Topical ocular drug delivery: recent developments and future challenges. J Ocul Pharmacol. 1986;2:67–108. doi: 10.1089/jop.1986.2.67. [DOI] [PubMed] [Google Scholar]
  • 9.Sasaki H, Yamamura K, Mukai T, et al. Enhancement of ocular drug penetration. Crit Rev Ther Drug Carrier Syst. 1999;16:85–146. [PubMed] [Google Scholar]
  • 10.Bundgaard H, editor. Design of Prodrugs. Amsterdam, The Netherlands: Elsevier Science; 1985. [Google Scholar]
  • 11.Bodor N, Kaminski JJ. Prodrugs and site-specific chemical delivery systems. Annu Rep Med Chem. 1987;22:303–313. [Google Scholar]
  • 12.Wermuth CG, Gaignault J-C, Marchandeau C. Designing prodrugs and bioprecursors I: Carrier prodrugs. In: Wermuth CG, editor. The Practice of Medicinal Chemistry. London, UK: Academic Press; 1996. pp. 671–696. [Google Scholar]
  • 13.Ettmayer P, Amidon GL, Clement B, Testa B. Lessons learned from marketed and investigational prodrugs. J Med Chem. 2004;47:2393–2404. doi: 10.1021/jm0303812. [DOI] [PubMed] [Google Scholar]
  • 14.Bodor N. Drug targeting and retrom etabolic drug design approaches. Adv Drug Deliv Rev. 1994;14:157–166. doi: 10.1016/0169-409X(94)90036-1. [DOI] [Google Scholar]
  • 15.Bodor N, Buchwald P. Drug targeting via retrometabolic approaches. Pharmacol Ther. 1997;76:1–27. doi: 10.1016/S0163-7258(97)00098-3. [DOI] [PubMed] [Google Scholar]
  • 16.Bodor N, Buchwald P. Retrometabolism-based drug design and targeting. In: Abraham DJ, editor. Drug Discovery and Drug Development. Burger’s Medicinal Chemistry and Drug Discovery. 6th ed. New York, NY: John Wiley and Sons; 2003. pp. 533–608. [Google Scholar]
  • 17.Bodor N, El-Koussi A, Kano M, Nakamuro T. Improved delivery through biological membranes. 26. Design, synthesis, and pharmacological activity of a novel chemical delivery system for β-adrenergic blocking agents. J Med Chem. 1988;31:100–106. doi: 10.1021/jm00396a015. [DOI] [PubMed] [Google Scholar]
  • 18.El-Koussi A, Bodor N. Formation of propanolol in the iris-ciliary body from its propranolol ketoxime precursor—a potential antiglaucoma drug. Int J Pharm. 1989;53:189–194. doi: 10.1016/0378-5173(89)90312-8. [DOI] [Google Scholar]
  • 19.Bodor N, Prokai L. Site- and stereospecific ocular drug delivery by sequential enzymatic bioactivation. Pharm Res. 1990;7:723–725. doi: 10.1023/A:1015863521513. [DOI] [PubMed] [Google Scholar]
  • 20.Bodor N, El-Koussi A. Improved delivery through biological membranes. LVI. Pharmacological evaluation of alprenoxime—a new potential antiglaucoma agent. Pharm Res. 1991;8:1389–1395. doi: 10.1023/A:1015849123020. [DOI] [PubMed] [Google Scholar]
  • 21.Simay A, Prokai L, Bodor N. Oxidation of aryloxy-β-amino alcohols with activated dimethylsulfoxide: a novel C-N oxidation facilitated by neighboring group effect. Tetrahedron. 1989;45:4091–4102. doi: 10.1016/S0040-4020(01)81305-3. [DOI] [Google Scholar]
  • 22.Simay A, Bodor N. Site- and stereospecific drug delivery to the eye. In: Sarel S, Mechoulam R, Agranat I, editors. Trends in Medicinal Chemistry ’90. Oxford, UK: Blackwell Scientific Publications; 1992. pp. 361–368. [Google Scholar]
  • 23.Bodor N. Retrometabolic drug design concepts in ophthalmic targetspecific drug delivery. Adv Drug Deliv Rev. 1995;16:21–38. doi: 10.1016/0169-409X(95)00011-U. [DOI] [Google Scholar]
  • 24.Polgar P, Bodor N. Minimal cardiac electrophysiological activity of alprenoxime, a site-activated ocular β-blocker, in dogs. Life Sci. 1995;56:1207–1213. doi: 10.1016/0024-3205(95)00060-J. [DOI] [PubMed] [Google Scholar]
  • 25.Prokai L, Wu W-M, Somogyi G, Bodor N. Ocular delivery of the β-adrenergic antagonist alprenolol by sequential bioactivation of its methoxime analog. J Med Chem. 1995;38:2018–2020. doi: 10.1021/jm00011a021. [DOI] [PubMed] [Google Scholar]
  • 26.Bodor N, Farag HH, Somogyi G, Wu W-M, Barros MDC, Prokai L. Ocular-specific delivery of timolol by sequential bioactivation of its oxime and methoxime analogs. J Ocul Pharmacol. 1997;13:389–403. doi: 10.1089/jop.1997.13.389. [DOI] [PubMed] [Google Scholar]
  • 27.Farag HH, Wu W-M, Barros MDC, Somogyi G, Prokai L, Bodor N. Ocular-specific chemical delivery system of betaxolol for safe local treatment of glaucoma. Drug Des Discov. 1997;15:117–130. [PubMed] [Google Scholar]
  • 28.Nathanson JA. Stereospecificity of beta adrenergic antagonists: R-enantiomers show increased selectivity for beta-2 receptors in ciliary process. J Pharmacol Exp Ther. 1988;245:94–101. [PubMed] [Google Scholar]
  • 29.Mehvar R, Brocks DR. Stereospecific pharmacokinetics and pharmacodynamics of beta-adrenergic blockers in humans. J Pharm Pharm Sci. 2001;4:185–200. [PubMed] [Google Scholar]
  • 30.Sharif NA, Xu SX, Crider JY, McLaughlin M, Davis TL. Levobetaxolol (Betaxon) and other beta-adrenergic antagonists: preclinical pharmacology, IOP-lowering activity and sites of action in human eyes. J Ocul Pharmacol Ther. 2001;17:305–317. doi: 10.1089/108076801753162726. [DOI] [PubMed] [Google Scholar]
  • 31.Nandel FS, Dhaliwal RK, Singh B. Modeling, design, chiral aspects and role of para-substituents in aryloxypropranolamine based beta-blockers. Indian J Biochem Biophys. 1999;36:29–35. [PubMed] [Google Scholar]
  • 32.Quigley H. How common is glaucoma worldwide?Int Glaucoma Rev [serial online]. 2002; Available at: http://www.glaucom.com/Mettings/3-3/worldwide.php. Accessed August 16, 2005.
  • 33.Moroi SE, Lichter PR. Ocular pharmacology. In: Hardman JG, Limbird LE, editors. Goodman & Gilman’s The Pharmacological Basis of Therapeutics. New York, NY: McGraw-Hill; 1996. pp. 1619–1645. [Google Scholar]
  • 34.Alward WL. Biomedicine: a new angle on ocular development. Science. 2003;299:1527–1528. doi: 10.1126/science.1082933. [DOI] [PubMed] [Google Scholar]
  • 35.Radius RL, Diamond GR, Pollack IP, Langham ME. Timolol: a new drug for management of chronic simple glaucoma. Arch Ophthalmol. 1978;96:1003–1008. doi: 10.1001/archopht.1978.03910050527005. [DOI] [PubMed] [Google Scholar]
  • 36.Sugrue MF. New approaches to antiglaucoma therapy. J Med Chem. 1997;40:2793–2809. doi: 10.1021/jm9608725. [DOI] [PubMed] [Google Scholar]
  • 37.Stamper RL, Wigginton SA, Higginbotham EJ. Primary drug treatment for glaucoma: beta-blockers versus other medications. Surv Ophthalmol. 2002;47:63–73. doi: 10.1016/S0039-6257(01)00286-7. [DOI] [PubMed] [Google Scholar]
  • 38.Taniguchi T, Kitazawa Y. The potential systemic effect of topically applied beta-blockers in glaucoma therapy. Curr Opin Ophthalmol. 1997;8:55–58. doi: 10.1097/00055735-199704000-00010. [DOI] [PubMed] [Google Scholar]
  • 39.Hayreh SS, Podhajsky P, Zimmerman MB. Beta-blocker eyedrops and nocturnal arterial hypotension. Am J Ophthalmol. 1999;128:301–309. doi: 10.1016/S0002-9394(99)00160-9. [DOI] [PubMed] [Google Scholar]
  • 40.Nelson WL, Fraunfelder FT, Sills JM, Arrowsmith JB, Kuritsky JN. Adverse respiratory and cardiovascular events attributed to timolol ophthalmic solution, 1978–1985. Am J Ophthalmol. 1986;102:606–611. doi: 10.1016/0002-9394(86)90532-5. [DOI] [PubMed] [Google Scholar]
  • 41.Lynch MG, Whitson JT, Brown RH, Nguyen H, Drake MM. Topical β-blocker therapy and central nervous system side effects: a preliminary study comparing betaxolol and timolol. Arch Ophthalmol. 1988;106:908–911. doi: 10.1001/archopht.1988.01060140054023. [DOI] [PubMed] [Google Scholar]
  • 42.Fraunfelder FT, Meyer SM. Sexual dysfunction secondary to topical ophthalmic timolol. JAMA. 1985;253:3092–3093. doi: 10.1001/jama.253.21.3092. [DOI] [PubMed] [Google Scholar]
  • 43.Sorensen SJ, Abel SR. Comparison of the ocular beta-blockers. Ann Pharmacother. 1996;30:43–54. doi: 10.1177/106002809603000109. [DOI] [PubMed] [Google Scholar]
  • 44.Schoene RB, Martin TR, Charan NB, French CL. Timolol-induced bronchospasm in asthmatic bronchitis. JAMA. 1981;245:1460–1461. doi: 10.1001/jama.245.14.1460. [DOI] [PubMed] [Google Scholar]
  • 45.Van Buskirk EM, Weinreb RN, Berry DP, Lustgarten JS, Podos SM, Drake MM. Betaxolol in patients with glaucoma and asthma. Am J Ophthalmol. 1986;101:531–534. doi: 10.1016/0002-9394(86)90941-4. [DOI] [PubMed] [Google Scholar]
  • 46.Harris LS, Greenstein SH, Bloom AF. Respiratory difficulties with betaxolol. Am J Ophthalmol. 1986;102:274–275. doi: 10.1016/0002-9394(86)90157-1. [DOI] [PubMed] [Google Scholar]
  • 47.Pfitzner KE, Moffat JG. Sulfoxide-carbodiimide reactions. I. A facile oxidation of alcohols. J Am Chem Soc. 1965;87:5661–5670. doi: 10.1021/ja00952a026. [DOI] [Google Scholar]
  • 48.Bodor N. The soft drug approach. Chemtech. 1984;14:28–38. [Google Scholar]
  • 49.Bodor N, Buchwald P. Soft drug design: general principles and recent applications. Med Res Rev. 2000;20:58–101. doi: 10.1002/(SICI)1098-1128(200001)20:1<58::AID-MED3>3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]
  • 50.Bodor N. Trends in Medicinal Chemistry ’88: Proceedings of the Xth International Symposium on Medicinal Chemistry. Amsterdam, The Netherlands: Elsevier; 1989. Designing safer ophthalmic drugs; pp. 145–164. [Google Scholar]
  • 51.Bodor N. The use of retrometabolic drug design concepts in ophthalmic drug discovery. In: Reddy IK, editor. Ocular Therapeutics and Drug Delivery: A Multidisciplinary Approach. Lancaster, PA: Technomic; 1996. pp. 335–361. [Google Scholar]
  • 52.Albert A. Selective Toxicity: The Physico-Chemical Basis of Therapy. London, UK: Chapman and Hall; 1985. [Google Scholar]
  • 53.Gillette JR. Effects of induction of cytochrome P-450 enzymes on the concentration of foreign compounds and their metabolites and on the toxicological effects of these compounds. Drug Metab Rev. 1979;10:59–87. doi: 10.3109/03602537908993901. [DOI] [PubMed] [Google Scholar]
  • 54.Mannering GJ. Hepatic cytochrome P-450-linked drug-metabolizing systems. In: Testa B, Jenner P, editors. Concepts in Drug Metabolism. Part B. New York, NY: Marcel Dekker Inc; 1981. pp. 53–166. [Google Scholar]
  • 55.Borg KO, Carlsson E, Hoffmann K-J, Jönsson K-J, Thorin H, Wallin B. Metabolism of metoprolol-(3H) in man, the dog and the rat. Acta Pharmacol Toxicol (Copenh) 1975;36:125–135. doi: 10.1111/j.1600-0773.1975.tb03329.x. [DOI] [PubMed] [Google Scholar]
  • 56.Regardh CG, Johnsson G. Clinical pharmacokinetics of metoprolol. Clin Pharmacokinet. 1980;5:557–569. doi: 10.2165/00003088-198005060-00004. [DOI] [PubMed] [Google Scholar]
  • 57.Benfield P, Clissold SP, Brogden RN. Metoprolol: an updated review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy, in hypertension, ischaemic heart disease and related cardiovascular disorders. Durgs. 1986;31:376–429. doi: 10.2165/00003495-198631050-00002. [DOI] [PubMed] [Google Scholar]
  • 58.Bodor N, Oshiro Y, Loftsson T, Katovich M, Caldwell W. Soft drugs. 6. The application of the inactive metabolite approach for design of soft β-blockers. Pharm Res. 1984;1:120–125. doi: 10.1023/A:1016376003515. [DOI] [PubMed] [Google Scholar]
  • 59.Bodor N, El-Koussi A, Kano M, Khalifa MM. Soft drugs. 7. β-Blockers for systemic and ophthalmic use. J Med Chem. 1988;31:1651–1656. doi: 10.1021/jm00403a028. [DOI] [PubMed] [Google Scholar]
  • 60.Bodor N, El-Koussi A. Novel ‘soft’ β-blockers as potential safe antiglaucoma agents. Curr Eye Res. 1988;7:369–374. doi: 10.3109/02713688809031786. [DOI] [PubMed] [Google Scholar]
  • 61.Polgar P, Bodor N. Cardiac electrophysiologic effects of adaprolol maleate, a new β-blocker, in closed chest dogs. Life Sci. 1991;48:1519–1528. doi: 10.1016/0024-3205(91)90276-H. [DOI] [PubMed] [Google Scholar]
  • 62.Bodor N, El-Koussi A, Zuobi K, Kovacs P. Synthesis and pharmacological activity of adaprolol enantiomers: a new soft drug for treating glaucoma. J Ocul Pharmacol Ther. 1996;12:115–122. doi: 10.1089/jop.1996.12.115. [DOI] [PubMed] [Google Scholar]
  • 63.McGhee CN, Dean S, Danesh-Meyer H. Locally administered ocular corticosteroids: benefits and risks. Drug Saf. 2002;25:33–55. doi: 10.2165/00002018-200225010-00004. [DOI] [PubMed] [Google Scholar]
  • 64.Buchman AL. Side effects of corticosteroid therapy. J Clin Gastroenterol. 2001;33:289–294. doi: 10.1097/00004836-200110000-00006. [DOI] [PubMed] [Google Scholar]
  • 65.Raizman M. Corticosteroid therapy of eye disease: fifty years later. Arch Ophthalmol. 1996;114:1000–1001. doi: 10.1001/archopht.1996.01100140208016. [DOI] [PubMed] [Google Scholar]
  • 66.Dickerson JE, Dotzel E, Clark AF. Steroid-induced cataract: new perspectives from in vitro and lens culture studies. Exp Eye Res. 1997;65:507–516. doi: 10.1006/exer.1997.0359. [DOI] [PubMed] [Google Scholar]
  • 67.Heyns K, Koch W. Über die bildung eines aminozuckers ausd-fruktose und ammoniak. Z Naturforsch [B] 1952;7B:486–488. [Google Scholar]
  • 68.Bucala R, Fishman J, Cerami A. Formation of covalent adducts between cortisol and 16α-hydroxyestrone and protein: possible role in the pathogenesis of cortisol toxicity and systemic lupus erythematosus. Proc Natl Acad Sci USA. 1982;79:3320–3324. doi: 10.1073/pnas.79.10.3320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Manabe S, Bucala R, Cerami A. Nonenzymatic addition of glucocorticoids to lens proteins in steroid-induced cataracts. J Clin Invest. 1984;74:1803–1810. doi: 10.1172/JCI111599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Bucala R, Gallati M, Manabe S, Cotlier E, Cerami A. Glucocorticoid-lens protein adducts in experimentally induced steroid cataracts. Exp Eye Res. 1985;40:853–863. doi: 10.1016/0014-4835(85)90130-7. [DOI] [PubMed] [Google Scholar]
  • 71.Urban RC, Cotlier E. Corticosteroid-induced cataracts. Surv Ophthalmol. 1986;31:102–110. doi: 10.1016/0039-6257(86)90077-9. [DOI] [PubMed] [Google Scholar]
  • 72.Noble S, Goa KL. Loteprednol etabonate: clinical potential in the management of ocular inflammation. Bio Drugs. 1998;10:329–339. doi: 10.2165/00063030-199810040-00007. [DOI] [PubMed] [Google Scholar]
  • 73.Howes JF. Loteprednol etabonate: a review of ophthalmic clinical studies. Pharmazie. 2000;55:178–183. [PubMed] [Google Scholar]
  • 74.Bodor N, Buchwald P. Design and development of a soft corticosteroid, loteprednol etabonate. In: Schleimer RP, O’Byrne PM, Szefler SJ, Brattsand R, editors. Inhaled Steroids in Asthma. Optimizing Effects in the Airways. New York, NY: Marcel Dekker; 2002. pp. 541–564. [Google Scholar]
  • 75.Bodor N, inventor.Stéroïds doux exerçant une activité antiinflammatoire (Steroids having antiinflammatory activity). Belgian patent BE889,563 (Internat Classif C07J/A61K). November 3, 1981.
  • 76.Bodor N, Varga M. Effect of a novel soft steroid on the wound healing of rabbit cornea. Exp Eye Res. 1990;50:183–187. doi: 10.1016/0014-4835(90)90229-N. [DOI] [PubMed] [Google Scholar]
  • 77.Druzgala P, Hochhaus G, Bodor N. Soft drugs. 10. Blanching activity and receptor binding affinity of a new type of glucocorticoid: loteprednol etabonate. J Steroid Biochem. 1991;38:149–154. doi: 10.1016/0960-0760(91)90120-T. [DOI] [PubMed] [Google Scholar]
  • 78.Bodor N, Loftsson T, Wu W-M. Metabolism, distribution, and transdermal permeability of a soft corticosteroid, loteprednol etabonate. Pharm Res. 1992;9:1275–1278. doi: 10.1023/A:1015849132396. [DOI] [PubMed] [Google Scholar]
  • 79.Hochhaus G, Chen L-S, Ratka A, et al. Pharmacokinetic characterization and tissue distribution of the new glucocorticoid soft drug loteprednol etabonate in rats and dogs. J Pharm Sci. 1992;81:1210–1215. doi: 10.1002/jps.2600811217. [DOI] [PubMed] [Google Scholar]
  • 80.Bodor N, Murakami T, Wu W-M. Soft drugs. 18. Oral and rectal delivery of loteprednol etabonate, a novel soft corticosteroid, in rats—for safer treatment of gastrointestinal inflammation. Pharm Res. 1995;12:869–874. doi: 10.1023/A:1016213121069. [DOI] [PubMed] [Google Scholar]
  • 81.Bodor N, Wu W-M, Murakami T, Engel S. Soft drugs. 19. Pharmacokinetics, metabolism and excretion of a novel soft corticosteroid, loteprednol etabonate, in rats. Pharm Res. 1995;12:875–879. doi: 10.1023/A:1016265105139. [DOI] [PubMed] [Google Scholar]
  • 82.Monder C, Bradlow HL. Cortoic acids: explorations at the frontier of corticosteroid metabolism. Recent Prog Horm Res. 1980;36:345–400. doi: 10.1016/b978-0-12-571136-4.50016-4. [DOI] [PubMed] [Google Scholar]
  • 83.Bodor N. Novel approaches for the design of membrane transport properties of drugs. In: Roche EB, editor. Design of Biopharmaceutical Properties Through Prodrugs and Analogs. Washington, DC: Academy of Pharmaceutical Sciences; 1977. pp. 98–135. [Google Scholar]
  • 84.Bodor N. Designing safer drugs based on the soft drug approach. Trends Pharmacol Sci. 1982;3:53–56. doi: 10.1016/0165-6147(82)91008-2. [DOI] [Google Scholar]
  • 85.Bodor N. Metabolisme et Conception Medicaments: Quo Vadis? Proceedings of Symposium at Montpellier, France; November 26–27, 1981. Montpellier, France: CLIN MIDY; 1983. Soft drugs: strategies for design of safer drugs; pp. 217–251. [Google Scholar]
  • 86.Druzgala P, Bodor N. Regioselective O-alkylation of cortienic acid and synthesis of a new class of glucocorticoids containing a 17α-alkoxy, a 17α-(1’-alkoxyethyloxy), a 17α-alkoxymethyloxy, or a 17α-methylthiomethyloxy function. Steroids. 1991;56:490–494. doi: 10.1016/0039-128X(91)90008-J. [DOI] [PubMed] [Google Scholar]
  • 87.Bodor N. The application of soft drug approaches to the design of safer corticosteroids. In: Christophers E, Kligman AM, Schöpf E, Stoughton RB, editors. Topical Corticosteroid Therapy: A Novel Approach to Safer Drugs. New York, NY: Raven Press Ltd; 1988. pp. 13–25. [Google Scholar]
  • 88.Buchwald P, Bodor N. Soft glucocorticoid design: structural elements and physicochemical parameters determining receptor-binding affinity. Pharmazie. 2004;59:396–404. [PubMed] [Google Scholar]
  • 89.Buchwald P. General linearized biexponential model for QSAR data showing bilinear-type distribution. J Pharm Sci. 2005;94:2355–2379. doi: 10.1002/jps.20438. [DOI] [PubMed] [Google Scholar]
  • 90.Druzgala P, Wu W-M, Bodor N. Ocular absorption and distribution of loteprednol etabonate, a soft steroid, in rabbit eyes. Curr Eye Res. 1991;10:933–937. doi: 10.3109/02713689109020329. [DOI] [PubMed] [Google Scholar]
  • 91.Bodor N, Bodor N, Wu W-M. A comparison of intraocular pressure elevating activity of loteprednol etabonate and dexamethasone in rabbits. Curr Eye Res. 1992;11:525–530. doi: 10.3109/02713689209001808. [DOI] [PubMed] [Google Scholar]
  • 92.Novack GD, Howes J, Crockett RS, Sherwood MB. Change in intraocular pressure during long-term use of loteprednol etabonate. J Glaucoma. 1998;7:266–269. [PubMed] [Google Scholar]
  • 93.Howes J, Novack GD. Failure to detect systemic levels and effects of loteprednol etabonate and its metabolite, PJ-91, following chronic ocular administration. J Ocul Pharmacol Ther. 1998;14:153–158. doi: 10.1089/jop.1998.14.153. [DOI] [PubMed] [Google Scholar]
  • 94.Lotemax (Loteprednol Etabonate Ophthalmic Suspension 0.5%) [product monograph]. Rochester, NY: Bausch & Lomb Pharmaceuticals. 1998.
  • 95.Ilyas H, Slonim CB, Braswell GR, Favetta JR, Schulman M. Longterm safety of loteprednol etabonate 0.2% in the treatment of seasonal and perennial allergic conjunctivitis. Eye Contact Lens. 2004;30:10–13. doi: 10.1097/01.ICL.0000092071.82938.46. [DOI] [PubMed] [Google Scholar]
  • 96.Szelenyi I, Hermann R, Petzold U, Pahl A, Hochhaus G. Possibilities in improvement of glucocorticoid treatments in asthma with special reference to loteprednol etabonate. Pharmazie. 2004;59:409–411. [PubMed] [Google Scholar]
  • 97.Szelenyi I, Hochhaus G, Heer S, et al. Loteprednol etabonate: a soft steroid for the treatment of allergic diseases of the airways. Drugs Today (Barc) 2000;36:313–320. doi: 10.1358/dot.2000.36.5.575043. [DOI] [PubMed] [Google Scholar]
  • 98.Bodor N, inventor.Androstene derivatives. US patent 5 981 517. November 9, 1999.
  • 99.Barton P, Laws AP, Page MI. Structure-activity relationships in the esterase-catalysed hydrolysis and transesterification of esters and lactones.J Chem Soc, Perkin Trans 2. 1994; 2021–2029.
  • 100.Miklós A, Magyar Z, Kiss É, et al. 28-Day oral toxicity study with soft corticosteroid BNP-166 in rats and dogs, followed by a 14-day recovery period. Pharmazie. 2002;57:142–146. [PubMed] [Google Scholar]
  • 101.Kurucz I, Tóth S, Németh K, et al. Potency and specificity of the pharmacological action of a new, antiasthmatic, topically administered soft steroid, etiprednol dicloacetate (BNP-166) J Pharmacol Exp Ther. 2003;307:83–92. doi: 10.1124/jpet.103.053652. [DOI] [PubMed] [Google Scholar]
  • 102.Kurucz I, Németh K, Mészáros S, et al. Anti-inflammatory effect and soft properties of etiprednol dicloacetate (BNP-166), a new, antiasthmatic steroid. Pharmazie. 2004;59:412–416. [PubMed] [Google Scholar]
  • 103.Jaffuel D, Demoly P, Gougat C, et al. Transcriptional potencies of inhaled glucocorticoids. Am J Respir Crit Care Med. 2000;162:57–63. doi: 10.1164/ajrccm.162.1.9901006. [DOI] [PubMed] [Google Scholar]
  • 104.Bhalay G, Sandham DA. Recent advances in corticosteroids for the treatment of asthma. Curr Opin Investig Drugs. 2002;3:1149–1156. [PubMed] [Google Scholar]

Articles from The AAPS Journal are provided here courtesy of American Association of Pharmaceutical Scientists

RESOURCES